Skip to main content
Log in

Comparison of whole-blood glutathione peroxidase activity, levels of serum selenium, and lipid peroxidation in subjects from the fishing and rural communities of “Rabo de Peixe” village, San Miguel Island, the Azores’ Archipelago, Protugal

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The activity of glutathione peroxidase (GSH-Px), serum selenium (Se), and thiobarbituric acid reactive substances (TBARS) were measured in the whole blood of 148 healthy adults aged 20–60 yr from the fishing and rural communities of “Rabo de Peixe,” The Azores, Portugal.

The subjects did not live in the same household and had different socioeconomic profiles and dietary habits. The serum lipid profile and selected life habits were also considered in this study. No significant differences in the activity of GSH-Px were found in the interpopulation or intrapopulation analyses, classified by age or lipid profile.

An age-dependent GSH-Px increase was noted in the younger male (M) subgroups (20–39 yr). The Se levels were higher in fishers (f) of both genders (M, F) than in subjects living in the rural (r) environment: 110±25 µg/L (f, M), 89±20 µg/L (f, F), 88±22 µg/L (r, M) and 80±17 µg/L (r, F). In the fishers, but not in the rural population, Se was higher in the males, but it did not show significant variation with age. The levels of TBARS were lower in the f than in the r male group. The Se level was lower and TBARS higher in the hyperlipemic women in the f group, compared to the corresponding controls.

Our results suggest that the fishers (mainly men) show a better antioxidant status than that of their rural counterparts, due to differences in dietary habits between the study populations and between genders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Behne, C. Weiss-Nowak, H. Gessner, and A. Kyriakopoulos, New mammalian selenoproteins, in Trace Elements in Medicine, Health and Atherosclerosis, M. F. Reis, J. M. Pereira Miguel, AAS.C. Machado, and M. Abdulla, eds., Smith-Gordon, Nishimura, pp. 91–96 (1995).

    Google Scholar 

  2. H. Robberecht and H. Deelstra, Factors influencing blood selenium concentration values: a literature review, J. Trace Elements Electrolytes Health Dis. 8, 129–143 (1994).

    CAS  Google Scholar 

  3. K. R. Maddipati and L. J. Marnett, Characterization of the major hydroperoxide-reducing activity of human plasma, J. Biol. Chem. 262(36), 17,398–17,403 (1987).

    CAS  Google Scholar 

  4. M. Björnstedt, J. Xue, W. Huang, B. Akesson, and A. Holmgren, The thioredoxin and glutaredoxinsystems are efficient electron donors to human plasma glutathione peroxidase, J. Biol. Chem. 269, 29,382–29,384 (1994).

    Google Scholar 

  5. R. J. Kulmacz and W. E. M. Lands, Characteristics of prostaglandin II synthase, in Advances in Prostaglandin, Tromboxane, and Leukotriene Research, Volume 11, B. Samuelsson, R. Paoletti, and R. Ramwell, eds., Raven, New York, pp. 93–95 (1983)

    Google Scholar 

  6. H. Imai, H. Kashiwazaki, T. Suzuki, et al., Selenium levels and glutathione peroxidase activities in blood in an Andean high-altitude population, J. Nutr. Sci. Vitaminol. 41, 349–361 (1995).

    PubMed  CAS  Google Scholar 

  7. B. P. Yu, Cellular defenses against damage from reactive oxygen species, Physiol. Rev. 74(1), 139–162 (1994).

    PubMed  CAS  Google Scholar 

  8. H. Wiseman and B. Halliwell, Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer, Biochem. J. 313, 17–29 (1996).

    PubMed  CAS  Google Scholar 

  9. J. Nève, Selenium as a risk factor for cardiovascular diseases, J. Cardiovasc. Risk 3, 42–46 (1996).

    Article  PubMed  Google Scholar 

  10. J. Nève, S. Chamart, and L. Molle, Optimization of a direct procedure for determination of selenium in plasma and erythrocytes using Zeeman effect atomic absorption spectroscopy, in Trace Element Analytical Chemistry in Medicine and Biology, Volume 4, P. Bratter and P. Schramel, eds., Walter de Gruyter, New York, pp. 349–358 (1987).

    Google Scholar 

  11. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–169 (1967).

    PubMed  CAS  Google Scholar 

  12. K. Satoh, Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method, Clin. Chim. Acta 90, 37–43 (1978).

    Article  PubMed  CAS  Google Scholar 

  13. W. Wasowicz, J. Nève, and A. Peretz, Optimized steps in fluorimetric determination of thiobarbituric acid-reactive substances in serum: importance of extraction pH and influence of sample preservation and storage, Clin. Chem. 39, 12,2522–2526 (1993).

    Google Scholar 

  14. L. I. Guidez, G. J. Miller, M. Burstein, S. Slage, and H. A. Eder, Separation and quantification of subclasses of human plasma HDL by a simple precipitation procedure, J. Lipid Res. 23, 1206–1223 (1982).

    Google Scholar 

  15. A. M. Viegas-Crespo, M. L. Pavão, M. L. Mira, I. Torres, M. J. Halpern, and J. Nève, Comparison of serum selenium levels in inhabitants from different portuguese regions, in Therapeutic Uses of Trace Elements: Status, Epidemiology of Trace Elements and Intervention Studies, J. Nève, P. Chappuis, and M. Lamand, eds., Plenum, New York, pp. 351–354 (1996).

    Google Scholar 

  16. A. M. Viegas-Crespo, J. Nève, M. L. Monteiro, M. F. Amorim, O. Paulo, and M. J. Halpern, Selenium and lipid parameters in plasma of portuguese subjects, J. Trace Elements Electrolytes Health Dis. 8, 119–122 (1994).

    CAS  Google Scholar 

  17. A. M. Viegas-Crespo, M. L. Pavão, O. Paulo, V. Santos, M. C. Santos, and J. Nève, Trace element status (Se, Cu, Zn) and serum lipid profile in portuguese subjects of San Miguel Island from Azores’ archipelago, J. Trace Elements Med. Biol. 14, 1–5 (2000).

    Article  CAS  Google Scholar 

  18. L. Hagmar, M. Persson-Moschos, B. Akesson, and A. Schutz, Plasma levels of selenium, selenoprotein P and glutathione peroxidase and their correlations to fish intake and serum levels of thyrotropin and thyroid hormones: a study on Latvian fish consumers, Eur. J. Nutr. 52(11), 796–800 (1998).

    Article  CAS  Google Scholar 

  19. H. Robberecht, P. Hendrix, R. Van Cauwenbergh, and H. Deelstra, Actual daily dietary intake of selenium in Belgium, using duplicate portion sampling, Z. Lebensm. Unters. Forsch. 199, 251–254 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. A. M. Viegas-Crespo, M. L. Pavão, V. Santos, et al., Selenium status and cardiovascular risk factors in populations from different portuguese regions, in Natural Antioxidants and Food Quality in Atherosclerosis and Cancer Prevention: Selenium Intake and Status of Various Populations, J. Kumpulainen and J. Salonen, eds., The Royal Society of Chemistry, Cambridge, pp. 188–194 (1996).

    Google Scholar 

  21. J. Versieck and R. Cornelis, Trace elements in Plasma or Serum, CRC, Boca Raton, FL. (1989).

    Google Scholar 

  22. L. Guemouri, Y. Artur, B. Herbeth, C. Jeandel, G. Cuny, and G. Siest, Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood, Clin. Chem. 37(11), 1932–1937 (1991).

    PubMed  CAS  Google Scholar 

  23. C. Berr, A. Nicole, J. Godin, et al., Selenium and oxygen-metabolizing enzymes in elderly community residents: a pilot epidemiological study, J. Am. Geriatr. Soc. 41(2), 143–148 (1993).

    PubMed  CAS  Google Scholar 

  24. F. Girodon, D. Blache, A.-L. Monget, et al., Effect of a two-year supplementation with low doses of antioxidant vitamins and/or minerals in elderly subjects on levels of nutrients and antioxidant defense parameters, J. Am. Coll. Nutr. 16(4), 357–365 (1997).

    PubMed  CAS  Google Scholar 

  25. I. Ceballos-Picot, J. M. Trivier, A. Nicole, P. M. Sinet, and M. Thevenin, Age-correlated modifications of copper-zinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes, Clin. Chem. 38, 66–70 (1992).

    PubMed  CAS  Google Scholar 

  26. R. E. Pinto and W. Bartley, The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates, Biochem. J. 112, 109–114 (1969).

    PubMed  CAS  Google Scholar 

  27. J. Köhrle, R. Brigelius-Flohé, A. Böck, R. Gärtner, O. Meyer, and L. Flohé, Selenium in biology: facts and medical perspectives, Biol. Chem. 381, 849–864 (2000).

    Article  Google Scholar 

  28. L. Flohé, E. Wingender, and R. Brigelius-Flohé, Regulation of glutathione peroxidases, in Oxidative Stress and Signal Transduction, H. J. Forman and E. Cadenas, eds., Chapman & Hall, New York, pp. 415–440 (1997).

    Google Scholar 

  29. R. Brigelius-Flohé, Tissue-specific functions of individual glutathione peroxidases, Free Radical Biol. Med. 27(9/10), 951–965 (1999).

    Article  Google Scholar 

  30. T. Fox, C. Atherton, S. Fairweather-Tait, et al., Changes in indices of selenium status in men on low, medium, and high intakes, in Trace Elements in Man and Animals 10, A. M. Roussel, R. A. Andersen, and A. E. Favier, eds., Kluver Academic/Plenum Ps, New York, pp. 877–881 (2000).

    Google Scholar 

  31. D. Harman, Free radical theory of aging: history, in Free Radicals and Aging, I. Emerit and B. Chance, eds., Birkhauser, Bazel, pp. 1–10 (1992).

    Google Scholar 

  32. H. R. Andersen, J. B. Nielsen, F. Nielsen, and P. Grandjean, Antioxidative enzyme activities in human erythrocytes, Clin. Chem. 43(4), 562–568 (1997).

    PubMed  CAS  Google Scholar 

  33. H.-K. Wong, J. Riondel, and A. Favier, Biomarkers of mouse aging: Modifications of minerals on antioxidant enzymes, in Trace Elements in Man and Animals 10, A. M. Roussel, R. A. Andersen, and A. E. Favier, eds., Kluver Academic/Plenum Ps, New York, p. 448 (2000).

    Google Scholar 

  34. Y. Ito, O. Kajkenova, R. J. Feuers, et al., Impaired glutathione peroxidase activity accounts for the age-related accumulation of hydrogen peroxide in activated human neutrophils, J. Gerontol. A: Biol. Sci. Med. Sci. 53(3), M169-M175 (1998).

    CAS  Google Scholar 

  35. Y. Rayssiguier and A. Mazur, Trace elements: metabolism and oxidative modifications of lipoproteins, in Trace Elements in Man and Animals 10, A. M. Roussel, R. A. Andersen, and A. E. Favier, eds., Kluver Academic/Plenum Ps, New York, pp. 97–103 (2000).

    Google Scholar 

  36. J. T. Salonen, R. Salonen, K. Seppaenen, et al., Relationship of serum selenium and antioxidants to plasma lipoproteins, platelet aggregability and prevalent ischaemic heart disease in Eastern Finnish men, Atherosclerosis 70, 155–165 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. S. G. F. Bukkens, N. de Vos, F. J. Kok, E. G. Schouten, A. M. Bruijin, and A. Holfman, Selenium status and cardiovascular risk factors in healthy Dutch subjects, J. Am. Coll. Nutr. 9(2), 128–135 (1990).

    PubMed  CAS  Google Scholar 

  38. M. L. Pavão, V. Santos, A. Costa, et al., Selenium, copper and zinc in some Azorean populations, in New Aspects of Trace Element Research, M. Abdulla, M. Bost, S. Gamon, P. Arnaud, and G. Chazot, eds., Smith-Gordon, London, pp. 42–44 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavão, M.L., Cordeiro, C., Costa, A. et al. Comparison of whole-blood glutathione peroxidase activity, levels of serum selenium, and lipid peroxidation in subjects from the fishing and rural communities of “Rabo de Peixe” village, San Miguel Island, the Azores’ Archipelago, Protugal. Biol Trace Elem Res 92, 27–40 (2003). https://doi.org/10.1385/BTER:92:1:27

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:92:1:27

Index Entries

Navigation