Skip to main content
Log in

Effects of dietary vitamin E and selenium on antioxidative defense mechanisms in the liver of rats treated with high doses of glucocorticoid

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this work was to determine the effects of dietary intake vitamin E and selenium (Se) on lipid peroxidation as thiobarbituric acid reactive substances (TBARS) and on the antioxidative defense mechanisms in the liver of rats treated with high doses of prednisolone. Two hundred fifty adult male Wistar rats were randomly divided into five groups. The rats were fed a normal diet, but groups 3, 4, and 5 received a daily supplement in their drinking water of 20 mg vitamin E, 0.3 mg Se, and a combination of vitamin E and Se, respectively, for 30 d. For 3 d subsequently, the control group (group 1) was treated with a placebo, and the remaining four groups were injected intramuscularly with 100 mg/kg body weight (BW) prednisolone. After the last administration of prednisolone, 10 rats from each group were killed at 4, 8, 12, 24, and 48 h and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) enzymes and the levels of glutathione (GSH) and TBARS in their livers were measured. GSH-Px, SOD, and CAT enzyme activities and GSH levels in prednisolone-treatment group (group 2) began to decrease gradually at 4 h, falling respectively to 38%, 55%, and 40% of the control levels by 24 h, and recovering to the control levels at 48 h. In contrast, prednisolone administration caused an increase in the hepatic TBARS, reaching up to four times the levels of the control at 24 h. However, supplementation with vitamin E and Se had a preventive effect on the elevation of the hepatic TBARS and improved the diminished activities of the antioxidative enzymes and the levels of GSH. Therefore, the present study demonstrates the effectiveness of vitamin E and Se in reducing hepatic damage in glucocorticoid-treated rats and suggests that reductions in increased TBARS as a result of prednisolone may be an important factor in the action of vitamin E and Se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Havener, Ocular pharmacology, in Corticosteroid Therapy, Mosby, St. Louis, MO, pp. 347–405 (1978).

    Google Scholar 

  2. S. Erill, Corticotrophins and corticosteroids, in Side Effects of Drugs Annual, M.N.G. Dukes and J. K. Aronson, eds., Elsevier Science, New York, Vol. 15, pp. 418–425 (1991).

    Google Scholar 

  3. J. W. Lee, M. Iwatsuru, and H. Nihigori, Alteration of activities of hepatic antioxidant defense enzymes in developing chick embryos after glucocorticoid administration—a factor produce some adverse effects, J. Pharm. Pharmacol. 50, 655–666 (1998).

    PubMed  CAS  Google Scholar 

  4. A. Ohtsuka, T. Ohtani, H. Horiguchi, et al., Vitamin E reduces glucocorticoid-induced growth inhibition and lipid peroxidation in rats, J. Nutr. Sci. Vitaminol. 44, 237–247 (1998).

    PubMed  CAS  Google Scholar 

  5. A. Oikarinen, Development changes in the level of glucocorticoid receptors in chick embryo tissues, Med. Biol. 65, 199–202 (1987).

    PubMed  CAS  Google Scholar 

  6. B. Halliwell and J.M.C. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, in Oxygen Radicals in Biological Systems. Part B: Oxygen Radicals and Antioxidants, L. Packer and A. N. Glazer, eds., Methods in Enzymology Vol. 186 Academic, San Diego, CA, pp. 1–85 (1990).

    Chapter  Google Scholar 

  7. D. H. Nelson and A. Ruhmann-Wennhold, Corticosteroid increase superoxide anion production by rat liver microsomes, J. Clin. Invest. 56, 1062–1065 (1975).

    PubMed  CAS  Google Scholar 

  8. A. T. Diplock, The biological function of vitamin E and the nature of the interaction of the vitamin E with selenium, World Rev. Nutr. Diet 31, 171 (1987).

    Google Scholar 

  9. W. G. Hoekstra, Biochemical function of selenium and its relation to vitamin E, Fed. Proc. 34, 2083 (1975).

    PubMed  CAS  Google Scholar 

  10. Watanabe C., C. Y. Kim, and H. Satoh, Tissue-spesific modification of selenium concentration by acute and chronic dexamethasone administration in mice, Br. J. Nutr. 78, 501–509 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. Z. A. Placer, L. L. Cushman, and B. C. Johnson, Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems, Anal. Biochem. 16, 359–364 (1966).

    Article  PubMed  CAS  Google Scholar 

  12. B. Matkovics, I. Szabo, and I. S. Varga, Determination of enzyme activities in lipid peroxidation and glutathione pathways, Lab. Diagn. 15, 248–249 (1988) (in Hungarian).

    Google Scholar 

  13. H. P. Misra and I. Fridovich, The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247, 3170–3175 (1972).

    PubMed  CAS  Google Scholar 

  14. H. Aebi, Catalase in vitro, Methods Enzymol. 105, 121–126 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. J. Sedlak and R. H. Lindsay, Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent, Anal. Biochem. 25, 192–205 (1968).

    Article  PubMed  CAS  Google Scholar 

  16. O. H. Lowry, N. J. Rosebrough, A. L. Farr, et al., Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  17. SAS Institute Inc., SAS User’s Guide: Statistics, SAS Institute, Cary, NC (1988).

    Google Scholar 

  18. C. Peeters-Joris, A. M. Vandevoorde, and P. Baudhuin, Subcellular localization of superoxide dismutase in rat liver, Biochem. J. 150, 31–39 (1975).

    PubMed  CAS  Google Scholar 

  19. L. Barrow, H. R. Patel, and M. S. Tanner, Alpha-tocopherol deficiency fails to aggravate toxic liver injury but liver injury causes α-tocopherol retention, J. Hepathol. 16, 332–337 (1992).

    Article  CAS  Google Scholar 

  20. I. S. Jamal and J. C. Smith, Effects of cadmium on glutathione peroxidase, superoxide dismutase and lipid peroxidation in the rat heart: a possible mechanism of cadmium cardiotoxicity, Toxicol. Appl. Pharmacol. 80, 33–42 (1985).

    Article  Google Scholar 

  21. S. A. Wohaieb and D. V. Godin, Alterations in free radical tissue-defence mechanisms in streptozotocin-induced diabetes in rat, Diabetes 36, 1014–1018 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. M. C. Garg, K. P. Singh, and D. D. Bansal, Effects of vitamin E supplementation on antioxidant status of diabetic rats, Med. Sci. Res. 24, 325–326 (1996).

    CAS  Google Scholar 

  23. P. Faure, E. Rossini, J. L. Lafond, et al., Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets, J. Nutr. 127, 103–107 (1997).

    PubMed  CAS  Google Scholar 

  24. R. F. Burk, Selenium in nutrition, World Rev. Nutr. Diet. 30, 88 (1978).

    PubMed  CAS  Google Scholar 

  25. E. J. Underwood, Trace Elements in Human and Animal Nutrition, 4th ed., Academic, New York, pp. 362 (1977).

    Google Scholar 

  26. L. Packer, Protective role of vitamin E in biological systems, Am. J. Clin. Nutr. 53, 10,500–10,505 (1991).

    Google Scholar 

  27. H. Esterbauer, Cytotoxicity and genotoxicity of lipid-oxidation products, Am. J. Clin. Nutr. 57, 779–786 (1994).

    Google Scholar 

  28. G. M. Kostner, K. Ottl, M. Jauhiainen, et al., Human plasma phospholipids transfer protein accelerates exchange/transfer of α-tocopherol between lipoproteins and cells, Biochem. J. 305, 659–667 (1995).

    PubMed  CAS  Google Scholar 

  29. O. Olivieri, A. M. Stanzial, D. Girelly, et al., Selenium status fatty acids vitamin A and E, and aging: the nove study, Am. J. Clin. Nutr. 60, 510–517 (1994).

    PubMed  CAS  Google Scholar 

  30. Veris Research Summary, An Overview of Vitamin E Efficacy, Veris Research Information Service, Illiois, pp. 1–36 (1998).

    Google Scholar 

  31. P. H. Anderson, S. Berrett, and D.S.P. Patterson, The biological selenium status of livestock in Britain as indicated by sheep erythrocyte glutathione peroxidase activity, Vet. Rec. 104, 235–238 (1979).

    PubMed  CAS  Google Scholar 

  32. P. J. Smith, A. L. Tappel, and C. K. Chow, Glutathione peroxidase as a function of dietary selenomethionine, Nature 247, 392–393 (1974).

    Article  PubMed  CAS  Google Scholar 

  33. M. Meydani, Modulation of platelet thromboxane A2 and aortic prostacyclin synthesis by dietary selenium and vitamin E, Biol. Trace Element Res. 33, 79–86 (1992).

    CAS  Google Scholar 

  34. C. B. Ammerman and S. M. Miller, Selenium in ruminant nutrition: a review, J. Dairy Sci. 58, 1567–1577 (1974).

    Google Scholar 

  35. G. F. Combs and B. S. Combs, The role of selenium nutrition, Academic, London, pp. 206–312 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beytut, E., Aksakal, M. Effects of dietary vitamin E and selenium on antioxidative defense mechanisms in the liver of rats treated with high doses of glucocorticoid. Biol Trace Elem Res 91, 231–241 (2003). https://doi.org/10.1385/BTER:91:3:231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:91:3:231

Index Entries

Navigation