Biological Trace Element Research

, Volume 91, Issue 2, pp 97–110 | Cite as

Interactions between Chlamydia pneumoniae and trace elements

A possible link to aortic value sclerosis
  • Christina Nyström-Rosander
  • Ulf Lindh
  • Nils-Gunnar Ilbäck
  • Eva Hjelm
  • Stefan Thelin
  • Olle Lindqvist
  • Göran Friman
Accelerated Article

Abstract

An association between Chlamydia pneumoniae and atherosclerotic cardiovascular diseases has been suggested. However, other factors may interact in the pathogenesis of valve sclerosis. Therefore, trace elements important for C. pneumoniae growth and host defense and markers of C. pneumoniae infection were studied in sclerotic valves and serum. Forty-six patients undergoing surgical valve replacement due to advanced aortic sclerosis were prospectively studied. Valves from 15 forensic cases with no heart valve disease and plasma from 46 healthy volunteers served as controls. C. pneumoniae was detected in 16/46 (34.8 %) sclerotic valves and in 0/15 forensic controls. IgG and IgA antibodies to C. pneumoniae were present in 54.3% and 26.1 % patients, respectively. In the patients’ valves, iron, magnesium, and zinc each correlated to calcium, a marker of the histopathological severity of disease. Patients showed 10- to 70-fold increases of these trace elements in valves and an increased copper/zinc ratio in serum. In a majority of aortic sclerosis patients, one of several markers of C. pneumoniae infection were detected and all patients had a disturbed trace element balance in valves and serum suggestive of active immune process and infection. The pattern of trace element changes was essentially similar regardless of positive makers of C. pneumoniae, suggesting a similar etiopathogenesis in both subgroups. The 20-fold increase in iron, essential for C. pneumoniae growth, in sclerotic valves suggests a new possible link to this infection in aortic sclerosis.

Index Entries

Aortic valve sclerosis Chlamydia pneumoniae chronic infection trace elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Olsson, C.-J. Dalsgaard, A. Haegerstrand, M. Rosenqvist, L. Rydén, and J. Nilsson. Accumulation of T-lymphocytes and expression of interleukin-2 receptors in non-rheumatic stenotic aortic valves. J. Am. Coll. Cardiol. 23, 1164–1170 (1994).CrossRefGoogle Scholar
  2. 2.
    C. M. Otto, J. Kuusisto, D. D. Reichenbach, A. M. Gour, and K. D. O’Brien. Characterization of the early lesion of degenerative valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90, 844–853 (1994).PubMedGoogle Scholar
  3. 3.
    E. R. Mohler, M. K. Chawla, and A. W. Chang. Identification and characterisation of calcifying valve cells from human and canine aortic valves. J. Heart. Valve Dis. 8, 254–260 (1999).PubMedGoogle Scholar
  4. 4.
    C. Nyström-rosander, S. Thelin, E. Hjelm, O. Lindquist, C. Pahlson, and G. Friman. High incidence of Chlamydia pneumoniae in sclerotic heart valves of patients undergoing aortic valve replacement. Scand. J. Infect. Dis. 29, 361–365 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    J. T. Grayston. Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J. Infect. Dis. 181 (Suppl 3), S402–410 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Nyström-Rosander, U. Lindh, S. Thelin, O. Lindquist, G. Friman, and N.-G. Ilbäck. Trace element changes in sclerotic heart valves from patients undergoing aortic valve surgery. Biol. Trace. Elem. Res. 88, 9–24 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Fields. Role of trace elements in coronary heart disease. Br. J. Nutr. 81, 85–86 (1999).PubMedGoogle Scholar
  8. 8.
    A. Stallion, J. F. Rafferty, B. W. Warner, M. M. Ziegler, and F. C. Ryckman. Myocardial calcification: a predictor of poor outcome for myocarditis treated with extracorporeal life support. J. Pediatr. Surg. 29, 492–494 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    B. M. Altura and B. T. Altura. Cardiovascular risk factors and magnesium; relationship to atherosclerosis, ischemic heart disease and hypertension. Magnes. Trace Elem. 10, 182–192 (1991).PubMedGoogle Scholar
  10. 10.
    W. Beisel. Metabolic response of host to infections. In Textbook of Pediatric Infectious Diseases, 4th ed., (R. D. Feigin and J. D. Cherry, eds.). W.B. Saunders Co., Philadelphia, PA, 1998, pp. 54–69.Google Scholar
  11. 11.
    H. M. Freidank, H. Billing, and M. Wiedmann-Al-Ahmad. Influence of iron restriction on Chlamydia pneumoniae and C. trachomatis. J. Med. Microbiol. 50(3), 223–227 (2001).PubMedGoogle Scholar
  12. 12.
    G. Friman and N.-G. Ilbäck. Acute infection: metabolic responses, effects on performance, interaction with exercies, and myocarditis. Int. J. Sports Med. 19, 172–182 (1998).CrossRefGoogle Scholar
  13. 13.
    C. A. Gaydos, T. C. Quinn, and J. J. Eiden. Identification of Chlamydia pneumoniae by DNA amplification of the 16S rRNA gene. J. Clin. Microbiol. 30(4), 796–800 (1992).PubMedGoogle Scholar
  14. 14.
    L. A. Campbell, M. Perez Melgosa, D. J. Hamilton, C. C. Kuo, and J. T. Grayston. Detection of Chlamydia pneumoniae by polymerase chain reaction. J. Clin. Microbiol. 30(2), 434–439 (1992).PubMedGoogle Scholar
  15. 15.
    C. A. Gaydos and T. C. Quinn. The role of Chlamydia pneumoniae in cardiovascular disease. Adv. Intern. Med. 45, 139–173 (2000).PubMedGoogle Scholar
  16. 16.
    J. C. Smith, J. T. Holbrook, and D. E. Danford. Analysis and evaluation of zinc and copper in human plasma and serum. J. Am. Coll. Nutr. 4(6), 627–638 (1985).PubMedGoogle Scholar
  17. 17.
    O. Hess, U. Scherrer, B. Carabello, P. Nicod, and R. Frye. Aortic valve disease. In Cardiovascular Medicine 2nd ed. J. T. Willerson and J. N. Cohn, eds. Churchill Livingstone, Philadelphia, PA, 2000, pp. 325–342.Google Scholar
  18. 18.
    L. H. Chow, C. J. Gauntt, and B. M. McManus. Differential effects of myocarditic variants of Coxsackievirus B3 in inbred mice—a pathologic characterization of heart tissue damage. Lab. Invest. 64, 55–64 (1991).PubMedGoogle Scholar
  19. 19.
    T. Schinke and G. Karsenty. Vascular calcification—a passive process in need of inhibitors. Nephrol. Dial. Transplant. 15(9), 1272–1274 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Tohno, S. Tohno, T. Minami, et al. Differences in accumulation of elements in human cardiac valves. Biol. Trace Elem. Res. 77, 107–118 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    G. W. Meijer, R. B. Beans, G. B. Janssen, H. A. Vaessen, and G. J. Speijers. Cadmium and atherosclerosis in the rabbit: reduced atherogenesis by superseding of iron. Food Chem. Toxicol. 34, 611–621 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Ponraj, J. Makjanic, P. S. Thong, B. K. Tan, and F. Watt. The onset of atherosclerotic lesion formation in hypercholesterolemic rabbits is delayed by iron depletion. FEBS Lett. 459(2), 218–222 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    J. E. Raulston. Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect. Immun. 65(11), 4539–4547 (1997).PubMedGoogle Scholar
  24. 24.
    H. M. Al-Younes, T. Rudel, V. Brinkmann, A. J. Szczepek, and T. F. Meyer. Low iron availability modulates the course of Chlamydia pneumoniae infection. Cell Microbiol. 3(6), 427–437 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Driessen, H. Hirv, and L. Pink. Zinc regulates cytokine induction by superantigens and lipopolysaccharide. Immunology 84, 272–277 (1995).PubMedGoogle Scholar
  26. 26.
    F. L. Visseren, M. S. Verkerk, T. van der Bruggen, J. J. Marx, B. S. van Asbeck, and R. J. Diepersloot. Iron chelation and hydroxyl radical scavenging reduce the inflammatory response of endothelial cells after infection with Chlamydia pneumoniae or influenza A. Eur. J. Clin. Invest. 32 (Suppl 1), 84–90 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    N.-G. Ilbäck, G. Friman, and W. R. Beisel. Biochemical responses of the myocardium and red skeletal muscle to Salmonella typhimurium infection in the rat. Clin. Physiol. 3, 551–563 (1983).PubMedGoogle Scholar
  28. 28.
    A. Galante, A. Pietroiusti, M. Vellini, et al. C-reactive protein is increased in patients with degenerative aortic valvular stenosis. J. Am. Coll. Cardiol. 38(4), 1078–1082 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. K. Wong, P. J. Gallagher, and M. E. Ward. Chlamydia pneumoniae and atherosclerosis. Heart 81(3), 232–238 (1999).PubMedGoogle Scholar
  30. 30.
    J. Juvonen, T. Juvonen, A. Laurila, et al. Can degenerative aortic valve stenosis be related to persistent Chlamydia pneumoniae infection? Ann. Intern. Med. 128(9), 741–744 (1998).PubMedGoogle Scholar
  31. 31.
    C. C. Kuo, A. Shor, L. A. Campbell, H. Fukushi, D. L. Patton, and J. T. Grayston. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J. Infect. Dis. 167, 841–849 (1993).PubMedGoogle Scholar
  32. 32.
    A. Meijer, P. J. Rohol, S. K. Gielis-Proper, and J. M. Ossewaarde. Chlamydia pneumoniae antigens, rather than viable bacteria, persist in atherosclerotic lesions. J. Clin. Pathol. 53(12), 911–916 (2000).PubMedCrossRefGoogle Scholar
  33. 33.
    J. M. Penninger and K. Bachmaier. Review of microbial infections of the immune response to cardiac antigens. J. Infect. Dis. 181, (Suppl 3), S498–504 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Christina Nyström-Rosander
    • 1
  • Ulf Lindh
    • 5
    • 6
  • Nils-Gunnar Ilbäck
    • 1
    • 7
  • Eva Hjelm
    • 2
  • Stefan Thelin
    • 3
  • Olle Lindqvist
    • 4
  • Göran Friman
    • 1
  1. 1.Section of Infectious DiseasesUppsala University HospitalSweden
  2. 2.Section of Clinical Bacteriology, Department of Medical SciencesUppsala Univeristy HospitalSweden
  3. 3.Department of Thoracic and Cardiovascular SurgeryUppsala University HospitalSweden
  4. 4.Unit of Forensic Medicine, Department of Surgical SciencesUppsala University HospitalSweden
  5. 5.Section of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical ImmunologyUppsala University HospitalSweden
  6. 6.Centre for Metal Biology in UppsalaSweden
  7. 7.Toxicology DivisionNational Food AdministrationUppsalaSweden

Personalised recommendations