Skip to main content
Log in

Sequential changes in Fe, Cu, and Zn in target organs during early coxsackievirus B3 infection in mice

  • Accelerated Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In Coxsackievirus B3 (CB3) infection, the heart and pancreas are major target organs and, as a general host response, an associated immune activation and acute phase reaction develops. Although iron (Fe), copper (Cu), and zinc (Zn) are involved in these responses, sequential trace element changes in different target organs of infection have not been studied to date. In the present study, Fe, Cu, and Zn were measured through inductively coupled plasma mass spectrometry (ICP-MS) in the plasma, liver, spleen, heart, and pancreas during the early phase (d 1 and 3) of CB3 infection in female Balb / c mice. The severity of the infection was assessed through clinical signs of disease and histopathology of the heart and pancreas, including staining of CD4 and CD8 cells in the pancreas. During infection, the concentrations of Fe, Cu, and Zn changed in the plasma, liver, and pancreas, but not in the spleen and heart. The changes in plasma Cu, Zn, and Fe seemed to be biphasic with a decrease at d 1 that turned into increased levels by d 3. Cu showed similar biphasic changes in the liver, spleen, and pancreas, whereas, for Zn and Fe, this pattern was only evident in the liver. In the pancreas, the reverse response occurred with pronounced decreases in Fe (23%, p<0.05) and Zn (64%, p<0.01) at d 3. Although the pathophysiological interpretation of these findings requires further research, the sequential determination of these elements may be of clinical value in enterovirus infections in deciding the stage of disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Beisel, R. S. Pekarek, and R. W. Wannemacher, Jr., The impact of infectious diseases on trace element metabolism in the host, in Trace Element Metabolism in Animals, G. Hoekstra, H. E. Gauther, and W. Mertz, eds., University Park Press, Baltimore, MD, pp. 217–240 (1974).

    Google Scholar 

  2. W. R. Beisel, Metabolic response of the host to infections, in Textbook of Pediatric Infectious Disease, R. D. Feigin, and J. D. Cherry, eds., WB Saunders, Philadelphia, PA, pp. 54–69 (1998).

    Google Scholar 

  3. G. Friman and N.-G. Ilbäck, Acute infection: metabolic responses, effects on performance, interaction with exercise, and myocarditis. Int. J. Sports Med. 19, 1–11 (1998).

    Article  Google Scholar 

  4. S. Cunningham-Rundles, Zinc modulation of immune function: specificity and mechanism of interaction. J. Lab. Clin. Med. 128, 9–11 (1991).

    Article  Google Scholar 

  5. P. J. Fraker, P. DePasquale-Jardieu, C. M. Zwickl, and R. W. Luecke, Regeneration of T-helper cell functions in zinc deficient adult mice. Proc. Natl. Acad. Sci. USA 75, 5660–5664 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. E. Funseth, U. Lindh, G. Friman, and N.-G. Ilbäck, Relation between trace element levels in plasma and myocardium during coxsackievirus B3 myocarditis in the mouse. Bio-Metals 13, 361–367 (2000).

    CAS  Google Scholar 

  7. N.-G. Ilbäck, J. Fohlman, and G. Friman, The protective effect of selenium on the development of coxsackievirus B3 induced inflammatory lesions in the murine myocardium. J. Trace Elem. Exp. Med. 2, 257–266 (1989).

    Google Scholar 

  8. N.-G. Ilbäck, J. Fohlman, and G. Friman, Effects of selenium supplementation on virus-induced inflammatory heart disease. Biol. Trace Elem. Res. 63, 51–66 (1998).

    PubMed  Google Scholar 

  9. M. A. Beck, P. C. Kolbeck, Q. Shi, C. V. Morris, and O. A. Levander, Increased virulence of a human enterovirus (coxsackievirus B3) in selenium-deficient mice. J. Infect. Dis. 170, 351–357 (1994).

    PubMed  CAS  Google Scholar 

  10. J. P. Vartiainen, M. Sala, M. Henry, S. Wain-Hobson, and A. Meyerhaus, Manganese cations increase the mutation rate of human immunodeficiency virus type 1 ex vivo. J. Gen. Virol. 80, 1983–1986 (1999).

    Google Scholar 

  11. N.-G. Ilbäck, G. Friman, and W. R. Beisel, Biochemical responses of the myocardium and red skeletal muscle to Salmonella typhimurim in the rat. Clin. Physiol. 3, 551–563 (1983).

    PubMed  Google Scholar 

  12. A. Shenkin, Trace elements and inflammatory response: implications for nutritional support. Nutrition 11, 100–105 (1995).

    PubMed  CAS  Google Scholar 

  13. J. F. Woodruff, Viral Myocarditis. A review. Am. J. Pathol. 101, 424–479 (1980).

    Google Scholar 

  14. T. Hyypiä, M. Kallajoki, and P. Auvinen, Detection and typing of enteroviruses by nucleic acid probes and monoclonal antibodies, in New Concept in Viral Heart Disease, H. P. Schultheiss, ed., Springer Verlag, New York, pp. 115–124 (1988).

    Google Scholar 

  15. N.-G. Ilbäck, A. Mohammed, J. Fohlman, and G. Friman, Cardiovascular lipid accumulation with coxsackie B virus infection in mice. Am. J. Pathol. 136, 159–167 (1990).

    PubMed  Google Scholar 

  16. V. Kytö, A. Saraste, J. Fohlman, et al., Cardiomyocyte apoptosis after antiviral WIN 54954 treatment in murine coxsackievirus B3 myocarditis. Scand. Cardiovasc. Res. 36, 187–192 (2002).

    Google Scholar 

  17. S. A. Huber, Animal models: immunological aspects, in Viral Infections of the Heart, J. E. Banatvala, ed., Hodder & Stoughton, London, pp. 82–109 (1993).

    Google Scholar 

  18. N.-G. Ilbäck, J. Fohlman, S. Slorach, and G. Friman, Effects of the immunomodulator LS 2616 on lymphocyte subpopulations in murine coxsackievirus B3 myocarditis. J. Immunol. 142, 3225–3228 (1989).

    PubMed  Google Scholar 

  19. J. Fohlman, K. Pauksen, T. Hyypiä, G. Hyypiä et al., Antiviral treatment with WIN 54 954 reduces mortality in murine coxsackievirus B3 myocarditis. Circulation 94, 2254–2259 (1996).

    PubMed  CAS  Google Scholar 

  20. J. F. Woodruff and E. D. Kilbourne, The influence of quantitated post weaning undernutrition in coxsackievirus B3-infection of adult mice. I. Viral persistence and increased severity of lesions. J. Infect. Dis. 121, 137–163 (1970).

    PubMed  CAS  Google Scholar 

  21. G. Friman, N.-G. Ilbäck, and W. R. Beisel, The effect of strenuous exercise on infection with Francisella tularensis in rats. J. Infect. Dis. 145, 706–714 (1982).

    PubMed  CAS  Google Scholar 

  22. N.-G. Ilbäck, G. Friman, D. J. Crawford, and H. A. Neufeld, Effects of training on metabolic responses and performance capacity in Streptococcus pneumoniae infected rats. Med. Sci. Sports Exerc. 23, 422–427 (1991).

    PubMed  Google Scholar 

  23. S. Pekarek and J. A. Engelhardt, Infection-induced alterations in trace metal metabolism: Relationship to organism virulence and host defense, in Infection: The Physiologic and Metabolic Responses of the Host, R. S. Pekarek and J. A. Engelhardt, eds., Biomedical Press, Elsevier/North Holland, pp. 131–146 (1981).

  24. C. Driessen, H. Hirv, and L. Rich, Zinc regulates cytokine induction by superantigens and lipopolysaccharide. Immunology 84, 272–277 (1995).

    PubMed  CAS  Google Scholar 

  25. G. Fernandes, M. Nair, K. Onoe, T. Tanaka, R. Floyd, and R. A. Good, Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proc. Natl. Acad. Sci. USA 76, 457–461 (1979).

    Article  PubMed  CAS  Google Scholar 

  26. S. S. Percival, Copper and immunity. Am. J. Clin. Nutr. 67, 1064–1068 (1998).

    Google Scholar 

  27. C. Nyström-Rosander, S. Thelin, E. Hjelm, O. Lindqvist, C. Påhlson, and G. Friman, High incidence of Chlamydia pneumoniae in sclerotic heart valves of patients undergoing aortic valve replacement. Scand. J. Infect. Dis. 29, 361–365 (1997).

    Article  PubMed  Google Scholar 

  28. J. L. Sullivan and E. D. Weinberg, Iron and the Role of Chlamydia pneumoniae in heart disease. Emerg. Infect. Dis. 5, 724–726 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. J. A. Fernandes-Pol, P. D. Hamilton, and D. J. Klos, Essential viral and cellular zinc and iron containing metalloproteins as targets for novel antiviral and anticancer agents: Implications for prevention and therapy of viral diseases and cancer. Anticancer Research 21, 931–958 (2001).

    Google Scholar 

  30. R. Milanino, M. Marrella, R. Gasperini, M. Pasqualicchio, and G. Velo, Copper and zinc body levels in inflammation: an overview of the data obtained from animal and human studies. Agents and Action 39, 195–209 (1993).

    Article  CAS  Google Scholar 

  31. E. D. Savlov, W. H. Strain, and F. Heugin, Radio zinc studies in experimental wound healing. J. Surg. Res. 2, 209–212 (1962).

    Article  PubMed  CAS  Google Scholar 

  32. A. S. Prasad, J. T. Fitzgerald, B. Bao, F. W. J. Beck, and P. H. Chandrasekar, Duration of symptoms and cytokine plasma levels in patients with the common cold treated with zinc acetate. Ann. Intern. Med. 133, 245–252 (2000).

    PubMed  CAS  Google Scholar 

  33. P. Z. Sobocinski, W. J. Canterbury, C. A. Mapes, and R. E. Dinterman, Involvement of hepatic metallothioneins in hypozincemia associated with bacterial infection. Am. J. Physiol. 234, E399–406 (1978).

    PubMed  CAS  Google Scholar 

  34. E. Funseth, M. Påhlman, M.-J. Eloranta, G. Friman, and N.-G. Ilbäck. Effects of coxsackievirus B3 infection on the acute-phase protein metallothionein and on cytochrome P450 involved in the detoxification processes of TCDD in the mouse. Sci. Total Environ. 284, 37–47 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. A. Wicklund-Glynn, Y. Lind, E. Funseth, and N.-G. Ilbäck, The intestinal absorption of cadmium increases during a common viral infection (Coxsackievirus B3) in mice. Chem. Biol. Interact. 113, 79–89 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilbäck, NG., Benyamin, G., Lindh, U. et al. Sequential changes in Fe, Cu, and Zn in target organs during early coxsackievirus B3 infection in mice. Biol Trace Elem Res 91, 111–123 (2003). https://doi.org/10.1385/BTER:91:2:111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:91:2:111

Index Entries

Navigation