Skip to main content
Log in

Expression of P2X6, a purinergic receptor subunit, is affected by dietary zinc deficiency in rat hippocampus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of these experiments was to determine whether dietary zinc depletion affected protein expression in the hippocampus. Eleven weanling Sprague-Dawley male rats (21 d) were fed the AIN-93G diet containing 1.5 ppm zinc and supplemented with 30 ppm of zinc in the drinking water. After 1 wk, the rats were randomly divided into three groups: control (n=3), pair fed (n=3), and zinc restricted (n=5). All groups consumed the same diet. The zinc-restricted group consumed water containing no zinc. The rats were sacrificed 3 wk later. Chelatable zinc levels in the hippocampus, as measured by N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) staining, were significantly reduced in the zinc-restricted group. Analysis of hippocampal protein expression by two-dimensional electrophoresis (2DE) revealed increased expression of the P2X6 purinergic receptor in the zinc-restricted rats, as determined by MALDI mass spectrometry (MS) and database analysis. The data provided evidence for the dual effects of dietary zinc deficiency on the hippocampus, reducing ionic zinc levels and stimulating protein expression. The role the P2X6 receptor plays in the physiological response of the hippocampus to zinc depletion remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Wallwork, Zinc and the central nervous system, Prog. Food Nutr. Sci. 11, 203–247 (1987).

    PubMed  CAS  Google Scholar 

  2. J. C. Wallwork, D. B. Milne, R. L. Sims, and H. H. Sandstead, Severe zinc deficiency: effects on the distribution of nine elements (potassium, phosphorus, sodium, magnesium, calcium, iron, zinc, copper and manganese) in regions of the rat brain, J. Nutr. 113, 1895–1905 (1983).

    PubMed  CAS  Google Scholar 

  3. J. E. Coleman, Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins, Annu. Rev. Biochem. 61, 897–946 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. I. E. Dreosti, S. J. Manuel, R. A. Buckley, F. J. Fraser, and I. R. Record, The effect of late prenatal and/or early postnatal zinc deficiency on the development and some biochemical aspects of the cerebellum and hippocampus in rats, Life Sci. 28, 2133–2141 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. B. L. Vallee, J. E. Coleman, and D. S. Auld, Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains, Proc. Natl. Acad. Sci. USA 88, 999–1003 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73, 79 (1993).

    PubMed  CAS  Google Scholar 

  7. M. Bureau, J. Laschet, F. Minier, and P. Chauvel, Intervention of GABAergic neurotransmission in partial epilepsies, Rev. Neurol. 153, S46-S54 (1997).

    PubMed  Google Scholar 

  8. A. Draguhn, T. A. Verdorn, M. Ewert, P. H. Seeburg, and B. Sakman, Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+, Neuron 5, 781–788 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. T. G. Smart, S. J. Moss, X. Xie, and R. L. Huganir, GABAA receptors are differentially sensitive to zinc: dependence on subunit composition, Br. J. Pharmacol. 103, 1837–1839 (1991).

    PubMed  CAS  Google Scholar 

  10. G. L. Westbrook and M. L. Mayer, Micromolar concentrations of Zn++ antagonize NMDA and GABA responses of hippocampal neurons, Nature 328, 640–643 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. E. P. Huang, Metal ions and synaptic transmission: think zinc, Proc. Natl. Acad. Sci. USA 94, 13,386–13,387 (1997).

    CAS  Google Scholar 

  12. C. Acuna-Castillo, B. Morales, and J. P. Huidobro-Toro, Zinc and copper modulate differentially the P2Xsub4 receptor, J. Neurochem. 74, 1529–1537 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. J. E. Lisman, J. M. Fellous, and X. J. Wang, A role for NMDA-receptor channels in working memory, Nat. Neurosci. 1, 273–275 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. K. Nakazawa and Y. Ohno, Effects of neuroamines and divalent cations on cloned and mutated ATP-gated channels, Eur. J. Pharmacol. 325, 101–108 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. P. Séguéla, A. Haghighi, J. J. Soghomonian, and E. Cooper, A novel neuronal P2X ATP receptor ion channel with widespread distribution in the brain, J. Neurosci. 16, 448–455 (1996).

    PubMed  Google Scholar 

  16. K. Xiong, R. W. Peoples, J. P. Montgomery, Y. Chiang, R. R. Stewart, F. F. Weight, et al., Differential modulation by copper and zinc of P2X2 and P2X4 receptor function, J. Neurophysiol. 81, 2088–2094 (1999).

    PubMed  CAS  Google Scholar 

  17. E. Palma, L. Maggi, R. Miledi, and F. Eusebi, Effects of Zn2+ on wild and mutant neuronal alpha7 nicotinic receptors, Proc. Natl. Acad. Sci. USA 95, 10,246–10,250 (1998).

    Article  CAS  Google Scholar 

  18. R. Cloues, S. Jones, and D. A. Brown, Zn2+ potentiates ATP-activated currents in rat sympathetic neurons, Pflugers Arch. 424, 152–158 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. C. Li, R. W. Peoples, Z. Li, and F. F. Weight, Zn2+ potentiates excitatory action of ATP on mammalian neurons, Proc. Natl. Acad. Sci. USA 90, 8264–8267 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. M. A. Connor and C. Chavkin, Ionic zinc may function as an endogenous ligand for the haloperidol-sensitive sigma 2 receptor in rat brain, Mol. Pharmacol. 42, 471–479 (1992).

    PubMed  CAS  Google Scholar 

  21. C. J. Fredrickson, S. W. Suh, D. Silva, C. J. Fredrickson, and R. B. Thompson, Importance of zinc in the central nervous system: the zinc-containing neuron, J. Nutr. 130, 1471S-1483S (2000).

    Google Scholar 

  22. C. J. Frederickson, Neurobiology of zinc and zinc-containing neurons, Int. Rev. Neurobiol. 31, 145–238 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. J. Perez-Clausell and G. Danscher, Release of zinc sulphide accumulation into synaptic clefts after in vivo injection of sodium sulphide, Brain Res. 362, 358–361 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. R. G. M. Morris, J. Garrud, N. P. Rawlins, and J. O’Keefe, Place-navigation impaired in rats with hippocampal lesions, Nature 297, 681–683 (1982).

    Article  PubMed  CAS  Google Scholar 

  25. R. J. Steele and R. G. M. Morris, Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5, Hippocampus 9, 118–136 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. G. W. Hesse, Chronic zinc deficiency alters neuronal function of hippocampal mossy fibers, Science 205, 1005–1007 (1979).

    Article  PubMed  CAS  Google Scholar 

  27. L. Slomianka, Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat, Neuroscience 48, 325–352 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. X. Xie and T. G. Smart, A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission, Nature 349, 521–524 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. I. B. Introini-Collison, C. Castellano, and J. L. McGaugh, Interaction of GABAergic and beta-noradrenergic drugs in the regulation of memory storage, Behav. Neural Biol. 61, 150–155 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. P. M. Moran, J. M. Kane, and P. C. Moser, Enhancement of working memory performance in the rat by MDL 26,479, a novel compound with activity at the GABAA receptor complex, Brain Res. 8, 156–158 (1992).

    Article  Google Scholar 

  31. O. Paulsen and E. I. Moser, A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity, Trends Neurosci. 21, 273–278 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. X. Xie and T. G. Smart, Properties of GABA-mediated synaptic potentials induced by zinc in adult rat hippocampal pyramidal neurons, J. Physiol. 460, 503–523 (1993).

    PubMed  CAS  Google Scholar 

  33. K. A. Keller, A. Grider, and J. A. Coffield, Age-dependent influence of dietary zinc restriction on short-term memory in male rats, Physiol. Behav. 72, 339–348 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. C. J. Frederickson, E. J. Kasarskis, D. Ringo, and R. E. Frederickson, A quinoline fluoresence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain, J. Neurosci. Methods 20, 91–103 (1987).

    Article  PubMed  CAS  Google Scholar 

  35. A. Grider and M. F. Mouat, The acrodermatitis enteropathica mutation affects protein expression in human fibroblasts: analysis by two-dimensional gel electrophoresis, J. Nutr. 128, 1311–1314 (1998).

    PubMed  CAS  Google Scholar 

  36. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quanities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  37. T. Rabilloud, A comparison between low background silver diammine and silvernitrate protein stains, Electrophoresis 13, 429–439 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. K. A. Keller, Y. Chu, A. Grider, and J. A. Coffield, Supplementation with L-histidine during dietary zinc repletion improves short-term memory in zinc-restricted young adult male rats, J. Nutr. 130, 1633–1640 (2000).

    PubMed  CAS  Google Scholar 

  39. R. E. Frederickson, C. J. Frederickson, and G. Danscher, In situ binding of bouton zinc reversibly disrupts performance on a spatial memory task, Behav. Brain Res. 38, 25–33 (1990).

    Article  PubMed  CAS  Google Scholar 

  40. A. Takeda, S. Takefuta, S. Okada, and N. Oku, Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet, Brain Res. 859, 352–357 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. J. Wensink, W. J. M. Lenglet, R. D. Vis, and C. J. A. van den Hamer, The effect of dietary zinc deficiency on the mossy fiber zinc content of the rat hippocampus, Histochemistry 87, 65–69 (1987).

    Article  PubMed  CAS  Google Scholar 

  42. A. Takeda, T. Akiyama, J. Sawashita, and S. Okada, Brain uptake of trace metals, zinc and manganese, in rats, Brain Res. 640, 341–344 (1994).

    Article  PubMed  CAS  Google Scholar 

  43. G. Collo, R. A. North, E. Kawashima, E. Merlo-Pich, S. Neidhart, A. Surprenant, et al., Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels, J. Neurosci. 16, 2495–2507 (1996).

    PubMed  CAS  Google Scholar 

  44. M. Soto, M. Garcia-Guzman, C. Karschin, and W. Stuhmer, Cloning and tissue distribution of a novel P2X receptor from rat brain, Biochem. Biophys. Res. Commun. 223, 456–460 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. B. F. King, A. Townsend-Nicholson, S. S. Wildman, T. Thomas, K. M. Spyer, and G. Burnstock, Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes, J. Neurosci. 20, 4871–4877 (2000).

    PubMed  CAS  Google Scholar 

  46. K. T. Le, K. Babinski, and P. Seguela, Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor, J. Neurosci. 18, 7152–7159 (1998).

    PubMed  CAS  Google Scholar 

  47. P. Illes, K. Wirkner, W. Norenberg, S. A. Masino, and T. V. Dinwiddie, Interaction between the transmitters ATP and glutamate in the central nervous system, Drug Dev. Res. 52, 76–82 (2001).

    Article  CAS  Google Scholar 

  48. E. Masaki, K. Yamazaki, Y. Ohno, H. Nishi, Y. Matsumoto, and M. Kawamura, The anesthetic interaction between adenosine triphosphate and N-methyl-d-aspartate receptor antagonists in the rat, Anesth. Analg. 92, 134–139 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. E. Boue-Grabot, V. Archambault and P. Seguela, A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels, J. Biol. Chem. 275, 10,190–10,195 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Y., Mouat, M.F., Coffield, J.A. et al. Expression of P2X6, a purinergic receptor subunit, is affected by dietary zinc deficiency in rat hippocampus. Biol Trace Elem Res 91, 77–87 (2003). https://doi.org/10.1385/BTER:91:1:77

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:91:1:77

Index Entires

Navigation