Skip to main content
Log in

Reference ranges of copper and zinc and the prevalence of their deficiencies in an Arab population aged 15–80 years

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Serum concentrations of copper and zinc were measured by flame atomic absorption spectrophotometry in 560 Kuwaitis aged from 15 to 80 yr who were in apparent good health to establish reference ranges and determine the prevalence of the deficiency of the trace metals. Zinc/copper ratios were derived by calculation. Because the mean±SD (µM) for copper in females (24.9±7) was significantly higher (p<0.0001) than in males (21.0±5.8) and vice versa for zinc (17.0±3.5 [males] vs 15.5±3.4 [females]) and zinc/copper ratios (0.87±0.28 [males] vs 0.67±0.27 [females]), gender-specific reference ranges were established in addition to reference ranges for the total population. The reference range for zinc was closer to those reported for other populations than was copper. Body mass index (BMI) and copper values were lower and the zinc/copper ratio was higher in the young (15–24 yr) compared to the older subjects. Copper concentrations were positively associated with BMI values (r=0.302, p<0.0001). Smokers had significantly lower (p=0.011) BMI than nonsmokers. The prevalence of copper and zinc deficiency, 0.36% and 0.53%, respectively, was low. Generally, the values for serum copper and zinc obtained for the Kuwaiti population studied suggest adequate dietary intake of the trace metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Strain, Newer aspects of micronutrients in chronic disease: copper, Proc. Nutr. Soc. 53, 583–598 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. L. M. Sayre, G. Perry, and M. A. Smith, Redox metals and neurodegenerative disease, Curr. Opin. Chem. Biol. 3, 220–225 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. L. M. Klevay, L. Inman, L. K. Johnson, M. Lawler, J. R. Mahalco, D. B. Milne, et al., Increased cholesterol in plasma in a young man during experimental copper depletion, Metabolism 33, 1112–1118 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. D. Medeiros, L. Pellum, and B. Brown, Serum lipids and glucose associated with haemoglobin levels and copper and zinc intake in adults. Life Sci. 32, 1897–1904 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. B. Halliwell and J. M. C. Gutteridge, The chemistry of free radicals and related reactive species, in Free Radicals in Biology, 3rd ed., B. Halliwell and J. M. C. Gutteridge, eds., Oxford University Press, Oxford, pp. 36–104 (1999).

    Google Scholar 

  6. H. H. Sanstead, Requirements and toxicity of essential trace elements, illustrated by zinc and copper, Am. J. Clin. Nutr. 61, 621–624 (1995).

    Google Scholar 

  7. R. Cousins, Metal elements and gene expression, Annu. Rev. Nutr. 14, 449–469 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. W. M. Dunlap, G. W. James, and D. M. Hume, Anemia and neutropenia caused by copper deficiency, Ann. Intern. Med. 80, 470–476 (1974).

    PubMed  CAS  Google Scholar 

  9. C. R. Peterson and J. Burns, Copper deficiency in infancy, J. Clin. Biochem. Nutr. 4, 175–190 (1988).

    Google Scholar 

  10. D. A. Frankel, Supplementation of trace elements in parenteral nutrition: rationale and recommendations, Nutr. Res. 13, 583–596 (1993).

    Article  CAS  Google Scholar 

  11. S. Safai-Kutti, Oral zinc supplementation in anorexia nervosa. Acta Psychiatrica Scand. Suppl. 361, 14–17 (1990).

    CAS  Google Scholar 

  12. T. Hallbrook and E. Lanner, Serum zinc and healing of various leg ulcers, Lancet 2, 780–782 (1972).

    Article  Google Scholar 

  13. J. C. Smith, G. P. Butrimovitz, and W. C. Purdy, Direct measurement of zinc in plasma by atomic absorption spectroscopy, Clin. Chem. 25, 1487–1492 (1979).

    PubMed  CAS  Google Scholar 

  14. L. G. P. J. Aggett, Physiology and metabolism of essential trace elements, Clin. Endocrinol. Metab. 14, 513–543 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. P. J. Aggett, Essential minerals and trace element nutriture methodology, in Nutritional Status Assessment. A Manual for Population Studies, F. Fidanza, ed., Chapman & Hall, London, pp. 385–398 (1991).

    Google Scholar 

  16. F. Fischbach, Standards for tests of microminerals (trace), in Nurses Quick Reference to Common Laboratory Diagnostic Tests, 2nd ed., J. F. Fischbach, ed., Lippincott, New York, pp. 482–489 (1998).

    Google Scholar 

  17. A. Taylor, Detection of essential trace elements, Ann. Clin. Biochem. 33, 486–510 (1996).

    PubMed  CAS  Google Scholar 

  18. P. A. Walravens and K. M. Hambidge, Growth of infants fed a zinc-supplemented formula, Am. J. Clin. Nutr. 29, 1114–1121 (1976).

    PubMed  CAS  Google Scholar 

  19. B. S. Douglas, D. R. Lines, and C. A. Tse, Serum zinc level in New Zealand children, NZ Med. J. 83, 192–194 (1976).

    CAS  Google Scholar 

  20. K. Kasperek, L. E. Feinendegen, I. Lombeck, and H. J. Brewer, Serum zinc concentration during childhood, Eur. J. Pediatr. 126, 199–202 (1977).

    Article  PubMed  CAS  Google Scholar 

  21. G. E. Sechler, Vitamins, metals and nutritional factors, in Professional Practice in Clinical Chemistry: A Review, D. R. Dafour and P. J. Howantz, eds., American Association for Clinical Chemistry, and The National Academy of Clinical Biochemistry, Washington, DC, pp. 615–634 (1996).

    Google Scholar 

  22. D. B. Milne and P. E. Johnson, Assessment of copper status: effect of age and gender on reference ranges in healthy adults, Clin. Chem. 39, 683–687 (1993).

    Google Scholar 

  23. H. H. Sanstead, Copper bioavailability, requirements, Am. J. Clin. Nutr. 35, 809–814 (1982).

    Google Scholar 

  24. C. Hill and G. Matrone, Chemical parameters in the study of in vivo and in vitro interactions of transition elements, Fed. Proc. 29, 1474–1481 (1970).

    PubMed  CAS  Google Scholar 

  25. L. Klevay, Hypercholesterolemia in rats produced by an increase in the ratio of zinc to copper ingested, Am. J. Clin. Nutr. 26, 1060–1068 (1973).

    PubMed  CAS  Google Scholar 

  26. J. Lee, L. N. Kolonel, and M. W. Hinds. Relative merits of the weight-correlated-forheight indices, Am. J. Clin. Nutr. 34, 2521–2529 (1981).

    PubMed  CAS  Google Scholar 

  27. J. A. Colliver, S. Frank, and A. Frank, Similarity of obesity indices in clinical studies of obese adults: a factor for analytical study, Am. J. Clin. Nutr. 38, 640–647 (1983).

    PubMed  CAS  Google Scholar 

  28. A. E. Thomas, D. A. McCay, and B. M. Cutlip, Anomograph method for assessing body weight, Am. J. Clin. Nutr. 29, 302–304 (1976).

    PubMed  CAS  Google Scholar 

  29. I. D. Caterson, Obesity, part of the metabolic syndrome, Clin. Biochem. Rev. 18, 11–21 (1997).

    Google Scholar 

  30. H. H. Sanstead, Zinc nutrition in the United States, Am. J. Clin. Nutr. 26, 1251–1260 (1973).

    Google Scholar 

  31. P. Mason, Dietary sources of copper and zinc, in Handbook of Dietary Supplements. Vitamins and Other Health Supplements, P. Mason, ed., Blackwell Science, Cambridge, MA, pp. 64,213–214 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abiaka, C., Olusi, S. & Al-Awadhi, A. Reference ranges of copper and zinc and the prevalence of their deficiencies in an Arab population aged 15–80 years. Biol Trace Elem Res 91, 33–43 (2003). https://doi.org/10.1385/BTER:91:1:33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:91:1:33

Index Entries

Navigation