Skip to main content
Log in

Role of thiocyanate ion in metallothionein induction and in endogenous distribution of essential elements in the rat liver

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Thiocyanate is the major toxic metabolite of hydrogen cyanide, a toxic substance the organism may be exposed to as a result of cigarette smoking or industrial pollution. The complex interactions existing between metals and metallothionein induction are well known. However, the possible role of thiocyanate, which is also an anion, has not been established yet. Considering the interactions between metals and the metallothioneins, in this study the relationship between thiocyanate and the in vivo distribution of hepatic metallothionein and zinc, copper, iron, calcium, magnesium, and manganese are investigated in rats. This study implies that thiocyanate has, to some extent, an effect on the in vivo expression of metallothionein and endogenous distribution of essential elements in rat liver. Elevated levels of metallothionein and changes in hepatic concentrations of essential elements have suggested a role for thiocyanate in cellular metabolism and it might reflect a direct role of thiocyanate on alteration of cellular functional activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Newman, ed., Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives, Academic, Orlando, FL (1975).

    Google Scholar 

  2. F. S. Apple, M. C. Lowe, M. K. Gookins, and J. Kloss, Serum thiocyanate concentrations in patients with normal and impaired renal function receiving nitroprusside, Clin. Chem. 42, 1878–1879 (1996).

    PubMed  CAS  Google Scholar 

  3. J. Tenovuo, Nonimmunoglobulin defense factors in human saliva, in Human Saliva: Clinical Chemistry and Microbiology, Vol. II, J. Tenovuo, ed., CRC, Boca Raton, FL, pp. 55–91 (1989).

    Google Scholar 

  4. J. Hovinen, T. Pettersson-Fernholm, M. Lahti, and J. Vilpo, Role of thiocyanate ion in detoxification of the anticancer agent chlorambucil, Chem. Res. Toxicol., 11, 1377–1381 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. H. Rosling, Molecular antropology of cassava cyanogenesis, in The Impact of Plant Molecular Genetics, B. W. S. Soral, ed., Oxford University Press, New York, pp. 338–343 (1996).

    Google Scholar 

  6. J. Tor-Agbidye, V. S. Palmer, M. R. Laserev, A. M. Craig, L. L. Blythe, M. I. Sabri, et al., Bioactivation of cyanide to cyanate in sulfur amino acid deficiency: relevance to neurological disease in humans subsisting on cassava, Toxicol. Sci. 50, 228–235 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. S. Ripa and R. Ripa, Zinc cellular traffic: physiopathological considerations, Minerva Med. 86, 37–43 (1995).

    PubMed  CAS  Google Scholar 

  8. J. H. R. Kägi, Overview of metallothionein, in Methods in Enzymology, Riordan, ed., Academic, New York, pp. 613–626 (1991).

    Google Scholar 

  9. J. H. R. Kägi, Evolution, structure, and chemical activity of class I metallothioneins: an overview, in Metallothionein K. Y. Suzuki, III, N. Imura, and M. Kimura, eds., Birkhäuser, Basel, pp. 29–55 (1993).

    Google Scholar 

  10. H. H. Aydin, C. Coker, B. Ersoz, and G. Mentes, Distribution of zinc and copper in thiocyanate administrated rats, in Metal Ions in Biology and Medicine, P. H. Collery, P. Bratter, V. Negretti Bratter, and L. Khassanova, eds. John Libbey Eurotext, Paris, pp. 223–227 (1998).

    Google Scholar 

  11. A. R. Pettigrew and G. S. Fell, Simplified colorimetric determination of thiocyanate in biological fluids, and its application to investigation of the toxic amblyopias, Clin. Chem. 18, 996–1000 (1972).

    PubMed  CAS  Google Scholar 

  12. A. M. Scheuhammer and M. G. Cherian, Quantification of metallothioneins by a silver saturation method, Toxicol. Appl. Pharmacol. 82, 417–425 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with Folin’s phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  14. J. Cha, R. L. Makowiec, J. B. Penney, and A. B. Young, Multiple states of rat brain (RS)-alpha-amino-3 hydroxy-5-methylisoxazole-4-propionic acid receptors as revealed by quantative autoradiography, Mol. Pharmacol. 41, 832–838 (1992).

    PubMed  CAS  Google Scholar 

  15. P. S. Spencer, Food toxins, AMPA receptors and motor neuron diseases, Drug Metab. Rev. 31, 561–587 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. P. G. Furtmüller, U. Burner, G. Regelsberger, and C. Obinger, Spectral and kinetic studies on theformation of eosinophil peroxidase compound I and Its reaction with halides and thiocyanate, Biochemistry 39, 15,578–15,584 (2000).

    Article  Google Scholar 

  17. A. Slungaard and J. R. Mahoney, Jr., Thiocyanate is the major substrate for eosinophil peroxidase in physiologic fluids. Implications for cytotoxicity, J. Biol. Chem. 266, 4903–4910 (1991).

    PubMed  CAS  Google Scholar 

  18. M. B. Grisham and E. M. Ryan, Cytotoxic properties of salivary oxidants. Am. J. Physiol. 258, C115–C121 (1990).

    PubMed  CAS  Google Scholar 

  19. P. G. Furtmuller, U. Burner, and C. Obinger, Reaction of myeloperoxidase compound I with chloride, bromide- iodide and thiocyanate, Biochemistry 37, 17,923–17,930 (1998).

    Article  CAS  Google Scholar 

  20. J. R. Milligan, J. A. Aguilera, R. A. Paglinawan, and J. F. Ward, Mechanism of DNA damage by thiocyanate radicals, Int. J. Radiat. Biol. 76, 1305–1314 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. Y. Katayama and J. H. Widdicombe, Halide transport in Xenopus oocytes, J. Physiol. 443, 587–599 (1991).

    PubMed  CAS  Google Scholar 

  22. B. L. Vallee, Introduction to metallothioneins, in Methods in Enzymology, Metallobiochemistry Part B, J. F. Riordan and B. L. Vallee, eds. vol 205 Academic, San Diego, CA, Vol. 205 pp. 3–7 (1991).

    Chapter  Google Scholar 

  23. B. L. Vallae, Implications and inferences of metallothionein structure, Experientia 52(Suppl 5.), 16 (1987).

    Google Scholar 

  24. F. O. Brady, Induction of metallothionein in rats, in Methods in Enzymology, Metallobiochemistry, Part B, J. F. Riordan and B. L. Vallee, eds., Academic, San Diego, CA, Vol. 205, pp 559–566 (1991).

    Chapter  Google Scholar 

  25. K. T. Tamai, E. B. Gralla, L. M. Ellerby, J. S. Valentine, and D. J. Thiele, Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase, Proc. Natl. Acad. Sci. USA 90, 8013–8017 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. S. K. De, M. T. McMaster, and G. K. Andrews, Endotoxin induction of murine metallothionein gene expression, J. Biol. Chem. 265, 15,267–15,274 (1990).

    CAS  Google Scholar 

  27. K. S. Min, Y. Terano, S. Onosaka, and K. Tanaka, Induction of hepatic metallothionein by nonmetallic compounds associated with acute-phase response in inflammation, Toxicol. Appl. Pharmacol. 111, 152–162 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. J. W. Bauman, C. Madhu, J. M. McKim, Jr., Y. Liu, and C. D. Klaassen, Induction of hepatic metallothionein by paraquat, Toxicol. Appl. Pharmacol. 117, 233–241 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. T. Dalton, R. D. Palmiter, and G. K. Andrews, Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated HEPA cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res. 22, 5016–5023 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. M. A. Schwarz, J. S. Lazo, J. C. Yalowich, W. P. Allen, M. Whitmore, H. A. Bergonia, et al. Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric oxide, Proc. Natl. Acad. Sci. USA 92, 4452–4456 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. B. L. Vallee and K. F. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73, 79–118 (1993).

    PubMed  CAS  Google Scholar 

  32. E. H. Fischer and E. W. Davie, Recent excitement regarding metallothionein, Proc. Natl. Acad. Sci. USA 95, 3333–3334 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. V. Kalfakakou and T. J. Simons, Anionic mechanisms of zinc uptake across the human red cell membrane, J. Physiol. 421, 485–497 (1990).

    PubMed  CAS  Google Scholar 

  34. L. J. Jiang, W. Maret, and B. L. Vallee, The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase, Proc. Natl. Acad. Sci. USA 95, 3483–3488 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. C. Jacob, W. Maret, and B. L. Vallee, Control of zinc transfer between thionein, metallothionein, and zinc proteins, Proc. Natl. Acad. Sci. USA 95, 3489–3494 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. C. Askwith and J. Kaplan, Iron and copper transport in yeast and its relevance to human disease, Trends Biochem. Sci. 23, 135–138 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. M. D. Harrison, C. E. Jones, M. Solioz, and C. T. Dameron, Intracellular copper routing: the role of copper chaperons, Trends Biochem. Sci. 25, 29–32 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. R. A. Pufahl, C. P. Singer, K. L. Peariso, S. J. Lin, P. J. Schmidt, C. J. Fahrni, et al. Metal ion chaperone function of the soluble Cu (1) receptor Atxl, Science 278, 853–856 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. S. J. Lin, R. A. Pufahl, A. Dancis, T. V. O’Halloran, and V. C. Culotta, A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport, J. Biol. Chem. 272, 9215–9220 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. D. L. Savigni and E. H. Morgan, Transport mechanisms for iron and other transition metals in rat and rabbit erythoid cells, J. Physiol. 508, 837–850 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. D. R. Richardson and P. Ponka, The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells, BBA—Rev. Biomembr. 1331, 1–40 (1997).

    CAS  Google Scholar 

  42. T. A. Rouault and R. D. Klausner, Iron-sulfur clusters as biosensors of oxidants and iron, Trends Biochem. Sci. 21, 174–177 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. M. W. Hentze and L. C. Kühn, Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress, Proc. Natl. Acad. Sci. USA 93, 8175–8182 (1996).

    Article  PubMed  CAS  Google Scholar 

  44. J. C. Drapier and C. Bouton, Modulation by nitric oxide of metalloprotein regulatory activities, Bioessays 18, 549–556 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. N. H. Gehring, M. W. Hentze, and K. Pantopoulos, Inactivation of both RNA binding and aconitase activities of iron regulatory protein-I by quinone-induced oxidative stress, J. Biol. Chem. 274, 6219–6225 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. E. Carafoli, Intracellular calcium homeostasis, Annu. Rev. Biochem. 56, 395–433 (1987).

    Article  PubMed  CAS  Google Scholar 

  47. N-E. L. Saris, E. Mervaala, H. Karppanen, J. A. Khawaja, and A. Lewenstam, Magnesium: an update on physiological, clinical and analytical aspect. Clin. Chim. Acta 294, 1–26 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. R. D. Grubbs and M. E. Maguire, Magnesium as a regulatory cation: critical evaluation. Magnesium 6, 113–127 (1987).

    PubMed  CAS  Google Scholar 

  49. P. N. Flatman, Mechanism of magnesium transport, Annu. Rev. Physiol. 53, 259–271 (1991).

    Article  PubMed  CAS  Google Scholar 

  50. N. Nelson, Metal ion transporters and homeostasis, EMBO J. 18, 4361–4371 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. G. Durr, J. Strayle, R. Plemper, S. Elbs, S. K. Klee, P. Catty, et al., The medial-Golgi ion pump pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting and endoplasmic reticulum-associated protein degradation. Mol. Biol. Cell 9, 1149–1162 (1998).

    PubMed  CAS  Google Scholar 

  52. K. W. Beyenbach, Transport of magnesium across biological membranes, Magnesium Trace Elements 9, 233–254 (1990).

    CAS  Google Scholar 

  53. A. Romani and A. Scarpa, Regulation of cell magnesium, Arch. Biochem. Biophy. 298, 1–12 (1992).

    Article  CAS  Google Scholar 

  54. R. J. P. Williams, The biochemistry of sodium, potassium, magnesium and calcium, Q. Rev. Chem. Soc. 24, 331–365 (1970).

    Article  CAS  Google Scholar 

  55. F. I. Wolf, A. Di Francesco, V. Covacci, and A. Cittadini, cAMP activates magnesium efflux via the Na/Mg antiporter in ascites cells, Biochem. Biophys. Res. Commun. 202, 1209–1214 (1994).

    Article  PubMed  CAS  Google Scholar 

  56. V. A. Murphy, K. C. Washwani, Q. R. Smith, and S. I. Rapaport, Saturable transport of manganase (II) across the rat blood-brain barrier, J. Neurochem. 59, 300–306 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydin, H.H., Çelik, H.A. & Ersoz, B. Role of thiocyanate ion in metallothionein induction and in endogenous distribution of essential elements in the rat liver. Biol Trace Elem Res 90, 187–202 (2002). https://doi.org/10.1385/BTER:90:1-3:187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:90:1-3:187

Index Entries

Navigation