Skip to main content

Dietary silicon and arginine affect mineral element composition of rat femur and vertebra

Abstract

Both arginine and silicon affect collagen formation and bone mineralization. Thus, an experiment was designed to determine if dietary arginine would alter the effect of dietary silicon on bone mineralization and vice versa. Male weanling Sprague-Dawley rats were assigned to groups of 12 in a 2×2 factorially arranged experiment. Supplemented to a ground corn/casein basal diet containing 2.3 µg Si/g and adequate arginine were silicon as sodium metasilicate at 0 or 35 µg/g diet and arginine at 0 or 5 mg/g diet. The rats were fed ad libitum deionized water and their respective diets for 8 wk. Body weight, liver weight/body weight ratio, and plasma silicon were decreased, and plasma alkaline phosphatase activity was increased by silicon deprivation. Silicon deprivation also decreased femoral calcium, copper, potassium, and zinc concentrations, but increased the femoral manganese concentration. Arginine supplementation decreased femoral molybdenum concentration but increased the femoral manganese concentration. Vertebral concentrations of phosphorus, sodium, potassium, copper, manganese, and zinc were decreased by silicon deprivation. Arginine supplementation increased vertebral concentrations of sodium, potassium, manganese, zinc, and iron. The arginine effects were more marked in the silicon-deprived animals, especially in the vertebra. Germanium concentrations of the femur and vertebra were affected by an interaction between silicon and arginine; the concentrations were decreased by silicon deprivation in those animals not fed supplemental arginine. The change in germanium is consistent with a previous finding by us suggesting that this element may be physiologically important, especially as related to bone DNA concentrations. The femoral and vertebral mineral findings support the contention that silicon has a physiological role in bone formation and that arginine intake can affect that role.

This is a preview of subscription content, access via your institution.

References

  1. T. P. Kasten, P. Collin-Osdoby, N. Patel, P. Osdoby, M. Krukowski, T. P. Misko, et al., Potentiation of osteoblast bone-resporption activity by inhibition of nitric oxide synthase,Proc. Natl. Acad. Sci. USA 91, 3569–3573 (1994).

    PubMed  Article  CAS  Google Scholar 

  2. M. Fini, R. Giardino, N. Nicoli Aldini, L. Martini, M. Rocca, F. Bertoni, et al., Role of lactose, arginine and lysine combination in fracture healing,Ann. Ital. Chir. 67, 77–82 (1996) (in Italian).

    PubMed  CAS  Google Scholar 

  3. E. M. Carlisle, Silicon, inHandbook of Nutritionally Essential Mineral Elements, B. L. O’Dell and R. A. Sunde, eds., Marcel Dekker, New York, pp. 603–618 (1997).

    Google Scholar 

  4. R. A. Wapnir, The absorption of arsenic, boron, silicon, aluminum, tin, iodine and fluorine: interactions with proteins and other nutrients, inProtein Nutrition and Mineral Absorption, R. A. Wapnir, ed., CRC, Boca Raton FL, pp. 277–308 (1990).

    Google Scholar 

  5. F. H. Nielsen and B. Bailey, The fabrication of plastic cages for suspension in mass air flow racks,Lab. Anim. Sci. 29, 502–506 (1979).

    PubMed  CAS  Google Scholar 

  6. C. D. Seaborn and F. H. Nielsen, Effects of germanium and silicon on bone mineralization,Biol. Trace Element Res. 42, 151–164 (1994).

    Article  CAS  Google Scholar 

  7. T. Gurney, Jr. and E. G. Gurney, DABA fluorescence assay for submicrogram amounts of DNA, inMethods in Molecular Biology, Vol. 2,Nucleic Acids, J. M. Walker, ed., Humana, Totowa, NJ, pp. 5–11 (1984).

    Google Scholar 

  8. F. E. Lichte, S. Hopper, and T. W. Osborn, Determination of silicon and aluminum in biological matrices by inductively coupled plasma emission spectrometry,Anal. Chem. 52, 120–124 (1980).

    PubMed  Article  CAS  Google Scholar 

  9. F. H. Nielsen, T. R. Shuler, T. J. Zimmerman, and E. O. Uthus, Magnesium and methionine deprivation affect the response of rats to boron deprivation,Biol. Trace Element Res. 17, 91–107 (1988).

    Article  CAS  Google Scholar 

  10. SAS Institute, Inc.,SAS User’s Guide: Statistics Version, 5th ed., SAS Institute, Cary, NC (1985).

    Google Scholar 

  11. E. M. Carlisle, Silicon: an essential element for the chick,Science 178, 619–621 (1972).

    PubMed  Article  CAS  Google Scholar 

  12. K. Schwarz and D. B. Milne, Growth-promoting effects of silicon in rats,Nature 239, 333–334 (1972).

    PubMed  Article  CAS  Google Scholar 

  13. T. Tanaka, T. Nakanishi, Y. Hasuike, T. Inoue, K. Noguchi, and Y. Takamitsu, Paradoxical effect ofl-arginine on nitric oxide (NO) synthesis and histopathical changes in 5/6 nephrectomized SD rats,Nippon Jinzo Gakkai Shi 41, 754–63 (1999) (in Japanese).

    PubMed  CAS  Google Scholar 

  14. E. M. Carlisle, Silicon,Nutr. Rev. 33, 257–261 (1975).

    PubMed  CAS  Article  Google Scholar 

  15. C. D. Seaborn and F. H. Nielsen, Dietary silicon effects acid and alkaline phosphatase and45calcium uptake in bone of rats,J. Trace Elements Exp. Med. 7, 11–18 (1994).

    CAS  Google Scholar 

  16. K. L. Watkins and L. L. Southern, Effect of dietary sodium zeolite A and graded levels of calcium on growth, plasma, and tibia characteristics of chicks,Poultry Sci. 70, 2295–2303 (1991).

    CAS  Google Scholar 

  17. R. M. Leach, Jr., B. S. Heinrichs, and J. Burdene, Broiler chicks fed low calcium diets. 1. Influence of zeolite on growth rate and parameters of bone metabolism,Poultry Sci. 69, 1539–1543 (1990).

    CAS  Google Scholar 

  18. J. Eisinger and D. Clairet, Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study,Magnesium Res. 6, 247–249 (1993).

    CAS  Google Scholar 

  19. H. Rico, J. L. Gallego-Lago, E. R. Hernandez, L. F. Villa, A. Sanchez-Atrio, C. Seco, et al., Effect of silicon supplement on osteopenia induced by ovariectomy in rats,Calcif. Tissue Int. 66, 53–55 (2000).

    PubMed  Article  CAS  Google Scholar 

  20. M. Hott, C. de Pollak, D. Modrowski, and P. J. Marie, Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats,Calcif. Tissue Int. 53, 174–179 (1993).

    PubMed  Article  CAS  Google Scholar 

  21. A. Schiano, F. Eisinger, P. Detolle, A. M. Laponche, B. Brisou, and J. Eisinger, Silicon, bone tissue and immunity (in French),Revue du Rhumatisme et des Maladies Osteo-Articulaires (Paris) 46, 483–486 (1979).

    CAS  Google Scholar 

  22. E. A. Ott and R. L. Asquith, Trace mineral supplementation of yearling horses,J. Anim. Sci. 73, 466–471 (1995).

    PubMed  CAS  Google Scholar 

  23. E. M. Carlisle, A silicon requirement for normal skull formation,J. Nutr. 110, 352–359 (1980).

    PubMed  CAS  Google Scholar 

  24. E. M. Carlisle, In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick,J. Nutr 106, 478–484 (1976).

    PubMed  CAS  Google Scholar 

  25. N. Schutze, M. J. Oursler, J. Nolan, B. L. Riggs, and T. C. Spelsberg, Zeolite A inhibits osteoclast-mediated bone resorption in vitro,J. Cell. Biochem. 58, 39–46 (1995).

    PubMed  Article  CAS  Google Scholar 

  26. L. Connelly, M. Palacios-Callender, C. Ameixa, S. Moncada, and A. J. Hobbs, Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide,J. Immunol. 166, 3873–3881 (2001).

    PubMed  CAS  Google Scholar 

  27. H. Tsukahara, M. Miura, S. Tsuchida, I. Hata, K. Hata, K. Yamamoto, et al., Effect of nitric oxide synthase inhibitors on bone metabolism in growing rats,Am. J. Physiol. 270, E840-E845 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seaborn, C.D., Nielsen, F.H. Dietary silicon and arginine affect mineral element composition of rat femur and vertebra. Biol Trace Elem Res 89, 239–250 (2002). https://doi.org/10.1385/BTER:89:3:239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:89:3:239

Index Entries

  • Silicon
  • bone mineralization
  • trace elements
  • bone DNA