Idiopathic scoliosis and concentrations of zinc, copper, and selenium in blood plasma

  • M. Dastych
  • J. Cienciala
Article

Abstract

The concentration of zinc, copper, selenium, albumin, and ceruloplasmin in blood plasma and the activity of superoxide dismutase and glutathione peroxidase in erythrocytes were determined in a set of patients with idiopathic scoliosis (n=51). A significant decrease of selenium concentration (0.50±0.16 µmol/L) was found when compared with a control group (0.69±0.07 µmol/L) (p<0.01). The same levels of significance were found out for selenium levels corrected for albumin content. In a group of patients with a curvature over 45° indicated for a surgical correction, the average plasma concentrations of selenium were significantly lower (p<0.05) in comparison with a group of patients with a curvature below 45° treated conservatively.

The GSH-Px activity in erythrocytes was the same in both sets. In comparison with the controls, no significant differences were revealed in all of the other parameters. The detection of the decreased blood plasma concentration of selenium has suggested possible disturbance of well-proportioned distribution and of general optimal availability of selenium in the organism of patients with idiopathic scoliosis with likely effects on the process of synthesis and maturation of collagen affecting the axial skeleton stability.

Index Entries

Idiopathic scoliosis zinc copper selenium blood plasma SOD GSH-Px 

References

  1. 1.
    T. S. Renshaw, Idiopathic scoliosis in children, Curr. Opin. Pediatr. 5, 407–412 (1993).PubMedGoogle Scholar
  2. 2.
    A. G. Veldhuizen, D. J. Wever, and P. J. Webb, The aetiology of idiopathic scoliosis: biomechanical and neuromuscular factors, Eur. Spine J. 9, 178–184 (2000).PubMedCrossRefGoogle Scholar
  3. 3.
    J. W. Roach, Adolescent idiopathic scoliosis, Orthop, Clin. North Am. 30, 353–365 (1999).CrossRefGoogle Scholar
  4. 4.
    T. G. Lowe, M. Edgar, J. Y. Margulies, N. H. Miller, V. J. Raso, K. A. Reinker, et al., Etiology of idiopathic scoliosis current trends in research, J. Bone Joint Surg. Am. 82, 1157–1168 (2000).PubMedGoogle Scholar
  5. 5.
    R. Savini, S. Cervellati, and E. Beroaldo, Spinal deformites in Marfan’s syndrome, Ital. J. Orthop. Traumatol. 6, 19–40 (1980).PubMedGoogle Scholar
  6. 6.
    K. N. Joseph, H. A. Kane, R. S. Milner, N. L. Steg, M. B. Williamson, Jr., and J. R. Bowen, Orthopedic aspects of the Marfan phenotype, Clin. Orthop. 277, 251–261 (1992).PubMedGoogle Scholar
  7. 7.
    K. J. Lipscomb, J. Clayton-Smith, and R. Harris, Evolving phenotype of Marfan’s syndrome, Arch. Dis. Child. 76, 41–46 (1997).PubMedGoogle Scholar
  8. 8.
    E. D. Harris, J. K. Rayton, J. E. Balthrop, R. A. DiSilvestro, and M. Garcia-de-Qevedo, Copper and the synthesis of elastin and collagen, Ciba Found. Symp. 79, 163–182 (1980).PubMedGoogle Scholar
  9. 9.
    R. K. Vadlamudi, R. J. McCormick, D. M. Medeiros, J. Vossoughi, and M. L. Failla, Copper deficiency alters collagen types and covalent cross-linking in swine myocardium and cardiac valves, Am. J. Physiol. 264, H2154-H2161 (1993).PubMedGoogle Scholar
  10. 10.
    R. G. Brown, P. R. Sweeny, and E. T. Moran Jr, Collagen levels in tissues from selenium deficient ducks, Comp. Biochem. Physiol. A 72, 383–389 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    P. R. Sweeny and R. G. Brown, Ultrastructural studies of the myotendonous function of selenium-deficient ducklings, Am. J. Pathol. 100, 481–496 (1980).PubMedGoogle Scholar
  12. 12.
    M. M. Walser, V. C. Morris, and O. A. Levander, Effect of dietary selenium on the development of Fusarium-induced tibial dyschondroplasia in broiler chikens, Avian Dis. 32, 84–88 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Peng, C. Yang, H. Rui, and H. Li. Study on the pathogenic factors of Kashin-Beck disease, J. Toxicol. Environ. Health 35, 79–90 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    C. L. Yang, M. Bodo, H. Notbohm, A. Peng, and P. K. Muller, Fulvic acid disturbs processing of procollagen II in articular cartilage of embryonic chicken and may also cause Kashin-Beck disease, Eur. J. Biochem. 202, 1141–1146 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Meret and R. I. Henkin, Simultaneous direct estimation by atomic absorption spectrophotometry of copper and zinc in serum, urine and cerebrospinal fluid, Clin. Chem. 17, 369–373 (1971)PubMedGoogle Scholar
  16. 16.
    E. Rothery, Analytical methods for graphite tube atomizers, VARIAN, No.85-100848-00 (1988).Google Scholar
  17. 17.
    B. Pohl, Determination of normal levels of selenium in blood serum by GFAAS, Varian, AA-103 (1991).Google Scholar
  18. 18.
    C. Yang, C. Niu, M. Bodo, E. Gabriel, H. Notbohm, E. Wolf, and P. K. Muller, Fulvic acid supplementation and selenium deficiency disturb the structural integirty of mouse skeletal tissue. An animal model study the molecular defects of Kashin-Beck disease, Biochem. J. 289, 829–835 (1993).PubMedGoogle Scholar
  19. 19.
    L. Q. Xu, W. X. Sen, Q. H. Xiong, H. M. Huang, and P. Schramel, Selenium in Kashin-Beck disease areas, Biol. Trace. Element Res. 31, 1–9 (1991).CrossRefGoogle Scholar
  20. 20.
    C. Yang, E. Wolf, K. Roser, G. Delling, and P. K. Muller, Selenium deficiency and fulvic acid supplementation induces fibrosis of cartilage and disturbs subchondral ossification in knee joints of mice: an animal model study of Kashin-Beck disease, Virchows Arch. A Pathol. Anat. Histopathol. 423, 483–491 (1993).PubMedCrossRefGoogle Scholar
  21. 21.
    V. Korunova, Z. Skodova, J. Dedina, Z. Valenta, J. Parizek, and Z. Pisa, Serum selenium in adult Czechoslovak (central Bohemia) population, Biol. Trace Element Res. 37(2–3), 91–99 (1993).Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • M. Dastych
    • 1
  • J. Cienciala
    • 2
  1. 1.Department of Clinical BiochemistryFaculty Hospital BrnoCzech Republic
  2. 2.Orthopedic ClinicFaculty Hospital BrnoCzech Republic

Personalised recommendations