P. G. Georgopoules, A. Roy, M. J. Yonone-Lioy, R. E. Opiekun, and P. J. Lioy, Enviromental copper: its dynamics and human exposure issues, J. Toxicol. Environ. Health B 4, 341–394 (2001).
Article
Google Scholar
R. Uauy, M. Oliveras, and M. Gonzales, Essentially of copper in humans, Am. J. Clin. Nutr.
67 (Suppl.) 952–959 (1988).
Google Scholar
N. Tietz, Textbook of Clinical Chemitry, W. B. Saunders, Philadelphia pp. 965–985 (1981).
Google Scholar
G. W. Evans, Copper homeostasis in the mammalian system, Physiol. Rev.
53(53), 535–570 (1973).
PubMed
CAS
Google Scholar
W. M. Dunlap, G. W. James, and D. M. Hume, Anemia and neutropenia caused by copper deficiency, Ann. Intern. Med.
80, 470–476 (1974).
PubMed
CAS
Google Scholar
G. E. Cartwright and M. N. Wintrobe, Copper metabolism in normal subjects, Am. J. Clin. Nutr.
14, 224–232 (1964).
PubMed
CAS
Google Scholar
E. J. Underwood, Trace Elements in Human and Animal Nutrition, 4th ed., Academic P, New York, pp. 56–108 (1977).
Google Scholar
P. N. Davis, L. C. Norris, and F. H. Kratzer, Interference of soybean proteins with the utilization of trace minerals, J. Nutr.
77, 217–223 (1962).
PubMed
CAS
Google Scholar
W. W. Carlton and W. Handerson, Studies in chickens fed a copper deficient diet supplemented with ascorbic acid, reserpine and diethylstilbestrol, J. Nutr.
85, 67–72 (1965).
PubMed
CAS
Google Scholar
C. H. Hill and B. Starcher, Effect of reducing agents on copper deficiency in the chick, J. Nutr.
85, 271–274 (1965).
PubMed
CAS
Google Scholar
K. C. Weiss and M. C. Linder, Copper transport in rats involving a new plasma protein, Am. J. Phisiol.
249, E77-E88 (1985).
CAS
Google Scholar
L. C. Bloomer and G. R. Lee, Normal hepatic copper metabolism, in Metals and the Liver, L. W. Powell, ed., Marcel Dekker, New York (1978).
Google Scholar
G. Gregoriadis and T. Sourkes. Intracellular distribution of copper in the liver of the rat, Can. J. Biochem.
45, 1841–1851 (1967).
PubMed
CAS
Article
Google Scholar
D. B. Milne and P. H. Weswig, Effect of supplementary copper on blood andliver copper-containing fractions in rats, J. Nutr.
95, 429–433 (1968).
PubMed
CAS
Google Scholar
M. C. Linder and M. Hazegh Azam, Copper biochemistry and molecular biology, Am. J. Clin. Nutr.
63, 797–811 (1966).
Google Scholar
N. Marceau and N. Aspin, The intracellular distribution of radio-copper derived from ceruloplasmin and from albumin, Biochem. Biophys. Acta.
328(2), 338–350 (1973).
PubMed
CAS
Google Scholar
World Health Organization, Trace Elements in Human Nutrition and Health, Who, Geneva pp. 123–141 (1996).
Google Scholar
J. T. Saari, A. M. Bode, and G. M. Dahlen, Defects of copper deficiency in rats are modified by dietary treatment that affect glycation, J. Nutr.
125, 2925–2934 (1995).
PubMed
CAS
Google Scholar
K. A. Sukalski, T. P. La Berge, and W. T. Johnson, In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency, Free Radical Biol. Med.
22(5), 835–842 (1997).
Article
CAS
Google Scholar
E. Rock, E. Gueux, A. Mazur, C. Motta, and Y. Rayssiquier, Anemia in copper-deficient rats: role of alterations in erythrocyte membrane fluidity and oxidative damage, Am. J. Physiol.
269(5), 1245–1249 (1995).
Google Scholar
T. M. Amin, J. A. Sirs, and P. Turner, Measurement of erythrocyte deformability using a stroboscopic recording centrifuge, Phys. Med. Biol.
28(Suppl.3), 269–275 (1983).
PubMed
Article
CAS
Google Scholar
D. S. Erdinçler, Y. Karakoç, S. Toplan, S. Önen, A. Sukyasyan, T. Beger, et al. The effect of ginkgo biloba glycoside on blood viscosity and erythrocyte deformability, Clin. Hemorheology
16(3), 271–276 (1996).
Google Scholar
J. D. Bauer, Viscosity of blood, in Gradwohl’s Clinical Laboratory Methods and Diagnosis, F. S. Reitman and A. C. Sonnenwirt, eds., Mosby, St. Louis, MO, pp. 492–493 (1970).
Google Scholar
A. A. Famadu, Hemorheological changes and fibrinolytic activity in adult asthmatic patients with sickle cell trait (HbAS), Clin. Hemorheol. Microcirc.
19, 1–5 (1998).
Google Scholar
A. Brown, and A. Taylor, Applications of a slotted quartz tube and flame atomic absorption spectrometry to the analysis of biological samples, Analyst
110, 579–582 (1985).
PubMed
Article
CAS
Google Scholar
J. N. Arora and G. J. Gores, Role of metals in ischemic reperfusion injury, Semin. Liver Dis.
16(1), 28–38 (1996).
Google Scholar
M. L. Shilsky, Wilson’s disease: genetic basis of copper toxicity and natural history, Semin. Liver Dis.
16(1), 83–95 (1996).
Article
Google Scholar
I. Fridovich, Superoxide dismutases, Adv. Enzymol. Related Areas Mol. Biol.
41(0), 35–97 (1974).
Article
CAS
Google Scholar
G. R. Lee and V. Herbert, Nutritional factors in the production and function of erythrocytes, in Wintrobe§ Clinical Hematology, 10th ed., G. R. Lee G., J. Foerster, J. Lukens, F. Paraskev, J. P. Greer, and G. M. Rodgers, eds., Williams & Wilkins, Baltimore, MD, Vol. I, pp. 228–266 (1999).
Google Scholar
B. M. Myers, B. A. Hamilton, and M. L. Shilsky, Proliferation of hepatic lysosomes and autophagic vacuoles in the LEC rat, Hepatology
22, 373A (1995).
K. Gwozdzinski, A spin label study of the action of cupric and mercuric ions on human red blood cells, Toxicology
65(3), 315–323 (1991).
PubMed
Article
CAS
Google Scholar
Z. S. Jehan and D. B. Matlag, Metal induced changes in the erythrocyte membrane of rats, Toxicol. Lett.
78(2), 127–133 (1995).
PubMed
Article
CAS
Google Scholar
D. Gelvan and P. Saltman, Different cellular targets for cupper and iron catalyzed oxidation observed using a copper-compatible thiobarbituric acid assay, Biochem. Biophys. Acta
1035(3), 353–360 (1990).
PubMed
CAS
Google Scholar
A. S. Prasad, Trace Elements and Iron in Human Metabolism, Wiley, London, pp. 289–303 (1978).
Google Scholar