Biological Trace Element Research

, Volume 88, Issue 3, pp 271–279 | Cite as

Effects of rutin supplementation on antioxidant status and iron, copper, and zinc contents in mouse liver and brain

  • Zhonghong Gao
  • Huibi Xu
  • Kaixun Huang


The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.

Index Entries

Rutin mouse liver brain iron copper zinc catalase superoxide dismutase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. Rice-Evans, N. J. Miller, G. P. Bolwell, P. M. Bramley, and J. B. Pridham, The relative antioxidant activities of plant-derived polyphenolic flavonoids, Free Radical Res. 22, 375–383 (1995).Google Scholar
  2. 2.
    J. Duarte, F. Perez-Vizcaino, A. Zarzuelo, J. Jimenez, and J. Tanargo, Vasodilator effects of quercetin in isolated rat vascular smooth muscle, Eur. J. Pharmacol. 239, 1–7 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    J. P. Brown, A review of the genetic effects of naturally occurring flavonoids, anthroquinones and related compounds, Mutat. Res. 75, 243–277 (1980).PubMedGoogle Scholar
  4. 4.
    E. Middleton and C. Kandaswami, Effects of flavonoids on immune and inflammatory function, Biochem. Pharmacol. 43, 1167–1179 (1992).PubMedCrossRefGoogle Scholar
  5. 5.
    P. C. Hollman and M. B. Katan, Health effects and bioavailability of dietary flavonols, Free Radical Res. 31(Suppl.) S75-S80 (1999).CrossRefGoogle Scholar
  6. 6.
    S. Suzuki, T. Takada, Y. Sugawara, T. Muto, and R. Kominami, Quercetin induces recombinational mutations in cultured cells as detected by DNA fingerprinting, Jpn. J. Cancer Res. 82, 1061–1064 (1991).PubMedGoogle Scholar
  7. 7.
    J. Jurada, E. Alcjandre-Duran, A. Alonso-Moraga, and C. Pucyo, Study on the mutagenic activity of 13 bioflavonoids with the Salmonella Ara test. Mutagenesis 6, 289–295 (1991).CrossRefGoogle Scholar
  8. 8.
    E. Dickancaite, A. Nemeikaite, A. Kalvelyte, and N. Cenas, Prooxidant character of flavonoid cytoxicity: structure-activity relationships, Biochem. Mol. Biol. Int. 45, 923–930 (1998).PubMedGoogle Scholar
  9. 9.
    G. Cao, E. Sofic, and R. L. Prior, Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships, Free Radical Biol. Med. 22, 749–760 (1997).CrossRefGoogle Scholar
  10. 10.
    A. Constantinou, R. Mehta, C. Runyan, K. Rao, A. Vaughan, and R. Moon, Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J. Nat. Prod. 58, 217–225 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    I. Morel, G. Lescoat, P. Cognel, O. Sergent, N. Pasdelop, P. Brissot, et al., Antioxidants and iron-iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures, Biochem. Pharmacol. 45, 13–19 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Sestili, A. Guidarelli, M. Dacha, and O. Cantoni, Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide: free radical scavenging versus iron chelating mechanism, Free Radical Biol. Med. 25, 196–200 (1998).CrossRefGoogle Scholar
  13. 13.
    S. M. Kuo, P. S. Leavitt, and C. P. Lin, Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells, Biol. Trace Element Res. 62, 135–153 (1998).Google Scholar
  14. 14.
    G. L. Peterson, A simplification of the protein assay method of Lowry et al., which is more generally applicable, Anal. Biochem. 83, 346–350 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    J. A. Buege and S. D. Aust, Microsomal lipid peroxidation, Methods Enzymol. 52, 302–310 (1978).PubMedGoogle Scholar
  16. 16.
    D. J. Crapo, J. M. McCord, and I. Fridovich, Preparation and assay of superoxide dismutase. Methods. Enzymol. 53, 382–393 (1978).PubMedGoogle Scholar
  17. 17.
    J. Pedraza-Chaverri, M. A. Granados-Silvestre, O. N. Medina-Campos, and R. Hernández-Pando, Effect of the in vivo catalase inhibition on aminonucleoside nephrosis, Free Radical Biol. Med. 27, 245–253 (1999).CrossRefGoogle Scholar
  18. 18.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. A. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med. 26, 1231–1237 (1999).CrossRefGoogle Scholar
  19. 19.
    G. Hertog, P. Hpllman, and M. Katan, Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands, J. Agric. Food Chem. 40, 2379–2383 (1992).CrossRefGoogle Scholar
  20. 20.
    J. Kühnau, The flavonoids, a class of semi-essential food components: their role in human nutrition, Word Rev. Nutr. Diet. 24, 117–191 (1976).Google Scholar
  21. 21.
    C. F. Skibola and M. T. Smith, Potential health impacts of excessive flavonoid intake, Free Radical Biol. Med. 29, 375–383 (2000).CrossRefGoogle Scholar
  22. 22.
    S. Burda and W. Oleszek, Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem 49, 2774–2779 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Saija, M. Scalese, M. Lanza, D. Marzullo, F. Bonina, and F. Castelli, Flavonoids as antioxidant agents: importance of their interaction with biomembranes, Free Radical Biol. Med. 19, 481–486 (1995).CrossRefGoogle Scholar
  24. 24.
    C. Manach, C. Morand, C. Demigné, O. Texier, F. Régérat, and C. Rémésy, Bioavailability of rutin and quercetin in rats, FEBS Lett. 409, 12–16 (1997).PubMedCrossRefGoogle Scholar
  25. 25.
    W. Bors, W. Heller, C. Michel, and M. Saran, Flavonoids as antioxidants: determination of radical scavenging efficiencies, Methods Enzymol. 186, 343–356 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    Z. Gao, K. Huang, X. Yang, and H. Xu, Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi, Biochim, Biophy. Acta 1472, 643–650 (1999).Google Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Zhonghong Gao
    • 1
  • Huibi Xu
    • 1
  • Kaixun Huang
    • 1
  1. 1.Department of ChemistryHuazhong University of Science & TechnologyWuhanPeople’s Republic of China

Personalised recommendations