Biological Trace Element Research

, Volume 87, Issue 1–3, pp 133–142 | Cite as

An interaction between dietary silicon and arginine affects immune function indicated by con-A-induced DNA synthesis of rat splenic T-lymphocytes

  • C. D. Seaborn
  • M. Briske-Anderson
  • F. H. Nielsen
Article

Abstract

Sporadic reports have appeared that suggest silicon plays a functional role in immune function by affecting lymphocyte proliferation. In addition, there is also considerable interest in supplemental arginine as a modulator of immune function. Therefore, the purpose of this animal experiment was to determine the effect of supplemental compared to adequate arginine on immune function as measured by splenic T-lymphocyte proliferation in the presence of adequate or inadequate dietary silicon. The independent variables were, per gram of fresh diet, silicon supplements of 0 or 35 µg and arginine supplements of 0 or 5 mg. The basal diet contained 2.3 µg silicon/g and 7.82 mg l-arginine/g. After feeding the male rats (nine per treatment group) for 8 wk, spleen lymphoid cells were isolated and cultured with methyl-3[H]thymidine. Supplemental arginine significantly decreased Con-A-induced DNA synthesis of splenic T-lymphocytes, but the response to arginine was influenced by dietary silicon. The decreased DNA synthesis was more marked when rats were fed adequate silicon than when fed inadequate silicon. Also, when arginine was not supplemented, DNA synthesis was higher in lymphocytes from rats fed an adequate silicon diet than rats fed the inadequate silicon diet. These findings support the hypothesis that an interaction between silicon and arginine affects immune function and that inadequate dietary silicon impairs splenic lymphocyte proliferation in response to an immune challenge.

Index Entries

Silicon T-lymphocyte proliferation immunity trace elements arginine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Moseley, M. Monick, and G. W. Hunninghake, Divergent effects of silica on lymphocyte proliferation and immunoglobulin production, J. Appl. Physiol. 65, 350–357 (1988).PubMedGoogle Scholar
  2. 2.
    Y. Rojanasakul, J. Ye, F. Chen, L. Wang, N. Cheng, V. Castranova, V. Vallyathan, et al., Dependence of NF-kappa B activation and free radical generation on silica-induced TNF-alpha production in macrophages, Mol. Cell. Biochem. 200, 119–125 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    J. G. Henrotte, D. Viza, J. M. Vich, and J. Gueyne, The regulatory role of silicon in cell division (in French), C.R. Acad. Sci. III 306, 525–528 (1988).PubMedGoogle Scholar
  4. 4.
    M. Yamaguchi, T. Kishimoto, Y. Watanabe, Y. Kawakami, F. Hyodoh, and A Ueki, The analysis of peripheral blood lymphocytes of patients with silicosis and effects of silica in vitro, Sangyo Eiseigaku Zasshi 38, 253–257 (1996) (in Japanese).PubMedGoogle Scholar
  5. 5.
    F. H. Nielsen and B. Bailey, The fabrication of plastic cages for suspension in mass air flow racks, Lab. Anim. Sci. 29, 502–506 (1979).PubMedGoogle Scholar
  6. 6.
    National Research Council, Nutrient requirements of the laboratory rat, in Nutrient Requirements of Laboratory Animals, 4th rev. ed., National Academy Press, Washington, DC, pp. 11–79 (1995).Google Scholar
  7. 7.
    C. D. Seaborn and F. H. Nielsen, Effects of germanium and silicon on bone mineralization, Biol. Trace Element Res. 42, 151–164 (1994).Google Scholar
  8. 8.
    T. R. Kramer, Reevaluation of zinc deficiency on Concanavalin-A-induced rat spleen lymphocyte proliferation, J. Nutr. 114, 953–963 (1984).PubMedGoogle Scholar
  9. 9.
    A. Boyum, Separation of leukocytes from blood and bone marrow, Scand. J. Clin Lab. Invest. 21(Suppl. 97), 77–89 (1968).Google Scholar
  10. 10.
    F. E. Lichte, S. Hopper, and T. W. Osborn, Determination of silicon and aluminum in biological matrices by inductively coupled plasma emission spectroscopy, Anal. Chem. 52, 120–124 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    F. H. Nielsen, T. R. Shuler, T. J. Zimmerman, and E. O. Uthus, Magnesium and methionine deprivation affect the response of rats to boron deprivation, Biol. Trace Element Res. 17, 91–107 (1988).Google Scholar
  12. 12.
    SAS Institute, Inc., SAS User’s Guide: Statistics Version 5, SAS Institute, Cary, NC (1985).Google Scholar
  13. 13.
    A. Flynn, Control of in vitro lymphocyte proliferation by copper, magnesium and zinc deficiency, J. Nutr. 114, 2034–2042, (1984).PubMedGoogle Scholar
  14. 14.
    C. N. Abboud, S. P. Scully, A. H. Lichtman, J. K. Brennan, and G. B. Segel, The requirements for ionized calcium and magnesium in lymphocyte proliferation, J. Cell. Physiol. 122, 64–72 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Barbul, S. A. Lazarou, D. T. Efron, H. L. Wasserkrug, and G. Efron, Arginine enhances wound healing and lymphocyte immune responses in humans, Surgery 108, 331–336 (1990).PubMedGoogle Scholar
  16. 16.
    J. M. Daly, J. Reynolds, A. Thom, L. Kinsley, M. Dietrick-Gallagher, J. Shou, et al., Immune and metabolic effects of arginine in the surgical patient, Ann. Surg. 208, 512–523 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    A. G. Ronnenberg, K. L. Gross, W. J. Hartman, S. N. Meydani, and R. L. Prior, Dietary arginine supplementation does not enhance lymphocyte proliferation or interleukin-2 production in young and aged rats, J. Nutr. 121, 1270–1278 (1991).PubMedGoogle Scholar
  18. 18.
    K. Takahashi, M. Orihashi, and Y. Akiba, Dietary L-arginine level alters plasma nitric oxide and alpha-1 acid glycoprotein concentrations and splenocyte proliferation in male broiler chickens following Escherichia coli lipopolysaccharide injection, Comp. Biochem. Physiol. C. Pharmacol. Toxicol. 124, 309–314 (1999).Google Scholar
  19. 19.
    E. A. Wiebke, N. A. Grieshop, R. A. Sidner, T. J. Howard, and S. Yang, Effects of l-arginine supplementation on human lymphocyte proliferation in response to nonspecific and alloantigenic stimulation, J. Surg. Res. 70, 89–94 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    R. A. Hoffman, J. M. Langrehr, T. R. Billiar, R. D. Curran, and R. L. Simmons, Alloantigen-induced activation of rat splenocytes is regulated by the oxidative metabolism of l-arginine, J. Immunol. 145, 2220–2226 (1990).PubMedGoogle Scholar
  21. 21.
    A. Schiano, F. Eisinger, P. Detolle, A. M. Laponche, B. Brisou, and J. Eisinger, Silicon, bone tissue and immunity (in French), Revue du Rhumatisme et des Maladies Osteo-Articulaires (Paris) 46, 483–486 (1979).Google Scholar
  22. 22.
    Z. D. Akuginova, G. E. Akuginova, M. B. Mezhlumova, V. G. Avdienko, and B. V. Nikonenko, Development of protective and tuberculosis immunity after BCG vaccination in mice with silicon deficiency in water and feed, (in Russian). Probl. Tuberk. (2): 23–24 (1995).Google Scholar
  23. 23.
    G. S. Davis, L. M. Pfeiffer, and D. R. Hemenway, Interferon-gamma production by specific lung lymphocyte phenotypes in silicosis in mice, Am. J. Respir. Cell. Mol. Biol. 22, 491–501 (2000).PubMedGoogle Scholar
  24. 24.
    M. T. Cruz, A. Carmo, A. P. Carvalho, and M. C. Lopes, Calcium-dependent nitric oxide synthase activity in rat thymocytes, Biochem. Biophys. Res. Commun. 248, 98–103 (1998).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Tarnok, T. Schluter, I. Berg, and G. Gercken, Silica induces changes in cytosolic free calcium, cytosolic pH, and plasma membrane potential in bovine alveolar macrophages, Anal. Cell. Pathol. 15, 61–72 (1997).PubMedGoogle Scholar
  26. 26.
    E. W. Gelfand, R. K. Cheung, G. B. Mills, and S. Grinstein, Role of membrane potential in the response of human T lymphocytes to phytohemagglutinin, J. Immunol. 138, 527–531 (1987).PubMedGoogle Scholar
  27. 27.
    B. S. Jensen, N. Odum, N. K. Jorgensen, P. Christophersen, and S. P. Olesen, Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels, Proc. Natl. Acad. Sci. USA 96, 10,917–10,921 (1999).Google Scholar
  28. 28.
    J. L. Kang, I. S. Pack, S. M. Hong, H. S. Lee, and V. Castranova, Silica induces nuclear factor-kappa B activation through tyrosine phosphorylation of I kappa B-alpha in RAW 264.7 macrophages, Toxicol. Appl. Pharmacol. 169, 59–65 (2000).PubMedCrossRefGoogle Scholar
  29. 29.
    L. Connelly, M. Palacios-Callender, C. Ameixa, S. Moncada, and A. J. Hobbs, Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide, J. Immunol. 166, 3873–3881 (2001).PubMedGoogle Scholar
  30. 30.
    R. Hammermann, M. D. Dreissig, J. Mossner, M. Fuhrmann, L. Berrino, M. Gothert, et al., Nuclear factor-kappa B mediates simultaneous induction of inducible nitric oxide synthase and up-regulation of the cationic amino acid transporter CAT-2B in rat alveolar macrophages, Mol. Pharmacol. 58, 1294–1302 (2000).PubMedGoogle Scholar
  31. 31.
    C. D. Seaborn and F. H. Nielsen, Further studies of the effect of silicon on collagen metabolism, FASEB J. 9, A448 (1995).Google Scholar
  32. 32.
    S. Takahashi, T. Fujita, and A. Yamamoto, Role of nuclear factor-kappa B in gastric ulcer healing in rats, Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1296–G1304 (2001).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • C. D. Seaborn
    • 1
  • M. Briske-Anderson
    • 2
  • F. H. Nielsen
    • 2
  1. 1.University of Wisconsin-StoutMenomonie
  2. 2.Grand Forks Human Nutrition Research CenterUSDA, ARSGrand Forks

Personalised recommendations