Skip to main content
Log in

Sequential thoracentesis

Minor change of zinc compared to other selected essential trace elements in the serum

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study first indicates that the serum trace element Zn tends to decrease in the course of sequential thoracenteses. Other selected essential elements such as copper (Cu), manganese (Mn), molybdenum (Mo), and cobalt (Co) do not reveal loss changes in their serum levels. Therefore, Zn should be monitored in patients who undergo repeated thoracentesis.

To measure the magnitude of changes in serum trace elements and the clinical relevance of potential imbalances, concentrations of the essential elements are analyzed in 57 serum/effusion pairs obtained from 5 patients (4 male, 1 female; age 28–78 yr) who underwent repeated thoracenteses as a result of recurrent pleural effusion. All patients declined other therapeutic options such as chemical pleurodesis and /or chest tube placement. The total volumes of fluid removed ranged from 2.3 to 19.3 L and the frequency of thoracentesis ranged from 6 to 15 within a period of 102–174 days. Two patients had benign pleural disease and three had malignancies. Three patients suffered from pleural effusions resulting from exudates (total protein content >3.0 g/dL, LDH >200 U/L), and two resulting from transudates (total protein <3.0 g/dL, LDH <200 U/L). All trace elements were simultaneously determined by inductively coupled argon plasma-mass spectrometry. In addition, the concentrations of the following clinically relevant parameters were analyzed by standard methods: total protein, pH, leukocyte count, lactate dehydrogenase, and glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Mertz, The essential trace elements, Science 213, 1332 (1981).

    Article  PubMed  CAS  Google Scholar 

  2. W. Domej, M. Krachler, C. Schlagenhaufen, M. Trinker, G. J. Krejs, and K. J. Irgolic, Trace elements in pleural effusions, J. Trace Elements Med. Biol. 11, 232–238 (1997).

    CAS  Google Scholar 

  3. D. E. Dines, L. R. Elveback, and J. T. Mc Call, Zinc, copper, and iron content of pleural fluid in benign and neoplastic disease, Thorax 27, 368–371 (1972).

    Article  PubMed  CAS  Google Scholar 

  4. F. Teksen, D. Mungan, A. Sayal, Z. Misirligil, A. Aydin, L. Gürbütz, et al., Serum and pleural fluid selenium, copper, zinc, and magnesium levels in malignant and nonmalignant pleural diseases, Respiration 63, 25–27 (1997).

    Google Scholar 

  5. M. Krachler, W. Domej, and K. J. Irgolic, Concentrations of trace elements in osteoarthritic knee-joint effusions, Biol. Trace Element Res. 75, 253–262 (2000).

    Article  CAS  Google Scholar 

  6. W. Domej, M. Krachler, W. Goessler, A. Maier, and K. J. Irgolic, Pleural effusions and sera from patients with benign or malignant diseases: copper, zinc, and laboratory parameters, Biol. Trace Element Res. 78, 13–33 (2000).

    Article  CAS  Google Scholar 

  7. W. Domej, M. Krachler, W. Goessler, A. Maier, K. J. Irgolic, and J. K. Lang, Concentrations of copper, zinc, manganese, rubidium, and magnesium in thoracic empyemata and corresponding sera, Biol. Trace Element Res. 78, 53–66 (2000).

    Article  CAS  Google Scholar 

  8. D. G. Barceloux, Copper, J. Toxicol. Clin. Toxicol. 37, 217–230 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. E. J. Gyorffy, and H. Chan, Copper deficiency and microcytic anemia resulting from prolonged ingestion of over-the-counter zinc, Am. J. Gastroenterol. 87, 1054–1055 (1992).

    PubMed  CAS  Google Scholar 

  10. R. Milanino, M. Marella, R. Gasperini, M. Pasqualicchio, and G. Vel, Copper and zinc body levels in inflammation: an overview of the data obtained from animal and human studies, Agents Actions 39, 195–209 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. C. Harlyk, J. McCourt, G. Bordin, A. R. Rodriguez, and A. Van der Eeckkout, Determination of copper, zinc and iron in broncho-alveolar lavages by atom absorption spectroscopy, J. Trace Elements Med. Biol. 11, 137–142 (1997).

    CAS  Google Scholar 

  12. K. E. Shepherd, Diagnostic value of serum to pleural fluid zinc ratios in pleural effusions, Chest 95, 707 (1989).

    PubMed  CAS  Google Scholar 

  13. A. S. Prasad, Effects of zinc deficiency on Th1 and Th2 cytokine shifts, J. Infect. Dis. 182(Suppl. 1), S62-S68 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. J. Litzmann, M. Dastych, and P. Hegar, Analysis of zinc, iron and copper serum levels in patients with common variable immunodeficiency, Allergol. Immunopathol. (Madr.) 23, 117–120 (1995).

    Google Scholar 

  15. Y. Moriwaki, T. Yamamoto, and K. Higashino, Distribution an pathophysiologic role of molybdenum-containing enzymes, Histol. Histopathol. 12, 513–524 (1997).

    PubMed  CAS  Google Scholar 

  16. D. G. Barceloux, Molybdenum, J. Toxicol, Clin. Toxicol. 37, 231–237 (1999).

    Article  CAS  Google Scholar 

  17. D. G. Barceloux, Cobalt, J. Toxicol. Clin. Toxicol. 37, 201–206 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. J. Neve, The nutritional importance and pharmacologic effects of cobalt and vitamin B 12 in man, J. Pharm. Belg. 46, 271–280 (1991).

    PubMed  CAS  Google Scholar 

  19. D. G. Barceloux, Manganese, J. Toxicol. Clin. Toxicol. 37, 231–237 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. J. W. Finley and C. D. Davis, Manganese deficiency and toxicity: are high or low dietary amounts of manganese cause for concern? Biofactors 10, 15–24 (1999).

    PubMed  CAS  Google Scholar 

  21. M. Petrou, D. Kaplan, and P. Goldstraw, Management of recurrent malignant pleural effusions. The complementary role of talc pleurodesis and pleuroperitoneal shunting, Cancer 75, 801–805 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. M. Krachler, W. Domej, and K. J. Irgolic, Trace elements in pleural effusions caused by benign and neoplastic conditions, in Metal Ions in Biology and Medicine P. H. Collery, P. Brätter, V. Negretti de Brätter, L. Khassanova, and J. C. Etienne, eds., John Libbey Eurotext, Paris, Vol. 5, pp. 603–607 (1998).

    Google Scholar 

  23. R. W. Light, M. I. McGregor, and P. C. Luchsinger, Pleural effusions: the diagnostic separation of transsudates and exudates, Ann. Intern. Med. 77, 507–513 (1972).

    PubMed  CAS  Google Scholar 

  24. S. Caroli, A. Almonti, E. Coni, F. Petrucci, O. Senofonte, and N. Violante, The assessment of reference values for elements in human biological tissue and fluids: a systematic review, Crit. Rev. Anal. Chem. 24, 363–398 (1994).

    Article  CAS  Google Scholar 

  25. T. R. Collins and S. A. Sahn, Thoracocentesis. Clinical value, complications, technical problems, and patient experience, Chest 91, 817–822 (1987).

    PubMed  CAS  Google Scholar 

  26. S. Sasse, T. Nguyen, L. R. Teixeira, and R. Light, The utility of daily therapeutic thoracentesis for the treatment of early empyema, Chest 116, 1703–1708 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. R. A. Wapnir, Zinc deficiency, malnutrition and the gastrointestinal tract, J. Nutr. 130(Suppl.), 1388S-1392S (2000).

    PubMed  CAS  Google Scholar 

  28. Z. Keller, L. Gehring, and T. Löser, Trace element disorders in patients with chronic kidney failure during analysis, Nieren- und Hochdruckkrankheiten 27, 522–532 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domej, W., Tilz, G.P., Demel, U. et al. Sequential thoracentesis. Biol Trace Elem Res 87, 29–43 (2002). https://doi.org/10.1385/BTER:87:1-3:029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:87:1-3:029

Index Entries

Navigation