Advertisement

Biological Trace Element Research

, Volume 86, Issue 2, pp 107–122 | Cite as

Zinc nutritional status in obese children and adolescents

  • Dilina Do Nascimento Marreiro
  • Mauro Fisberg
  • Silvia Maria Franciscato Cozzolino
Article

Abstract

Studies in animals and humans have corroborated that zinc (Zn) metabolism is altered in obesity. The present work intends to evaluate the Zn nutritional status in obese children and adolescents by the determination of some biochemical parameters and analyses of the diets. The investigation was carried out in a group of obese children and adolescents (n=23) and compared to a control group (n=21), both between 7 and 14 yr of age. A software analyzed diet information from 3-d food records. Body composition was evaluated by body mass index, bioelectrical impedance, and skinfold measurements. Zinc nutritional status was evaluated by Zn determination in plasma, erythrocyte, and 24-h urine, by atomic absorption spectrophotometry (γ=213.9 nm). Diets consumed by both groups had marginal concentrations of zinc. Zinc concentrations in plasma and erythrocytes were significantly lower in the obese group. Urinary zinc excretion was significantly higher in the same group. The results allowed one to conclude that zinc nutritional status in obese individuals is altered.

Index Entries

Zinc obesity adolescent nutrition child nutrition nutritional status 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. X. Pi-Sunyer, Obesity, In Modern Nutrition in Health and Disease, 8th ed. M. E. Shils, J. A. Olson, and M. Shike, eds., Lea & Febiger, Philadelphia vol. 2, pp. 984–1006 (1994).Google Scholar
  2. 2.
    R. P. Troiano, K. M. Flegal, R. J. Kuczmarski, S. M. Campbell, and C. L. Johnson, Overweight prevalence and trends for children and adolescents, Arch. Pediatr. Adolesc. Med. 149, 1085–1091 (1995).PubMedGoogle Scholar
  3. 3.
    W. T. Dietz, Health consequences of obesity in youth: childhood predictors of adult disease, Pediatrics 101, 518–525 (1998).PubMedGoogle Scholar
  4. 4.
    D. S. Weigle and J. L. Kuijper, Obesity genes and the regulation of body fat content, Bioessays 18, 867–874 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Bottcher and P. Furst, Decreased white fat cell thermogenesis in obese individuals, Int. J. Obes. Relat. Metab. Disord. 21, 439–444 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    M. D. Chen, P. Lin, and W. Sheu, Zinc status in plasma of obese individuals during glucose administration, Biol. Trace Element Res. 60, 123–129 (1997).Google Scholar
  7. 7.
    B. L. Vallee and H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73(1), 79–117 (1993).PubMedGoogle Scholar
  8. 8.
    J. M. Tanner and R. H. Whitehouse, Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty, Arch. Dis. Child. 51, 170–179 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    M. P. B. Nolasco, Diagnóstico clínico, in Obesidade na Infância e Adolescência, M. Fisberg, ed., Fundação BYK, São Paulo, p. 913 (1995).Google Scholar
  10. 10.
    J. V. G. A. Durnin and J. Womersley, Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years, Br. J. Nutr. 32, 77–92 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    A. R. Frisancho, New norms of upper limb fat and muscle areas for assessment of nutritional status, Am. J. Clin. Nutr. 34, 2540–2545 (1981).PubMedGoogle Scholar
  12. 12.
    S. Kirk and J. Loggie, in Adolescent Nutrition Assessment and Management, V. Rickert, ed., Chapman & Hall, New York, vol. 18, pp. 350–386 (1996).Google Scholar
  13. 13.
    G. A. Bray, Obesity, in Present Knowledge in Nutrition, 7th ed., E. E. Ziegler and L. J. Filer eds., International Life Sciences Institute Nutrition Foundation, Washington, DC, pp. 19–31 (1996).Google Scholar
  14. 14.
    R. C. Whitechouse, A. S. Prasad, P. I. Rabbani, and Z. T. Cossack, Zinc in plasma, neutrophils lymphocytes, and erythrocytes as determined by frameless atomic absorption spectrophotometry, Clin. Chem. 28, 475–480 (1982).Google Scholar
  15. 15.
    M. P. Rodriguez, A. Narizano, V. Demczylo, and A. Cid, A simpler method for the determination of zinc human plasma levels by flame atomic absorption spectrophotometry, Atomic Spectrosc. 10(2), 68–70 (1989).Google Scholar
  16. 16.
    O. W. Van Assendelft, The measurement of hemoglobin, in Modern Concepts in Hematology, G. Izak and S. M. Lewis, eds., Academic, New York, pp. 14–25 (1972).Google Scholar
  17. 17.
    S. Kilerich, M. S. Christiansen, J. Naestoft, and C. Christiansen, Determination of zinc in serum and urine by atomic absorption spectrophotometry; relationship between serum levels of zinc and proteins in 104 normal subjects, Clin. Chem. Acta 105, 231–239 (1980).CrossRefGoogle Scholar
  18. 18.
    G. E. Noether, Introdução à Estatística: Uma Abordagem Não Paramétrica, 2nd ed., Guanabara, Rio de Janeiro p. 258 (1983).Google Scholar
  19. 19.
    W. O. Bussab and P. A. Morettin, Estatística Básica: Métodos Qualitativos, 4th ed., Atual, São Paulo p. 321 (1987).Google Scholar
  20. 20.
    J. Neter, W. Wasserman, and M. H. Kutner, Applied Linear Statistical Models Regression Analysis of Variance and Experimental Designs, 3rd ed., Boston, p. 1181 (1996).Google Scholar
  21. 21.
    A. Must, G. Dalla, and W. H. Dietz, Reference Data for obesity: 85th and 96th percentiles of body mass index (wt/ht2) and triceps skinfold thickness, Am. J. Clin. Nutr. 53, 839–846 (1991).PubMedGoogle Scholar
  22. 22.
    World Health Organization, Prevention Status: The Use and Interpretation of Antropometry, Technical Reports Series 854, WHO, Geneva, pp. 263–307 (1995).Google Scholar
  23. 23.
    World Health Organization, Obesity: Preventing and Managing the Global Epidemic, WHO Geneva, pp. 5–13 (1998).Google Scholar
  24. 24.
    A. R. Frisancho, Anthopometric Standards for the Assessment of Growth and Nutrition Status, University of Michigan Press, Ann Arbor, pp. 77–92 (1974).Google Scholar
  25. 25.
    K. F. M. Zwiauer, R. Pakosta, T. Mueller, and K. Widhalm, Cardiovascular risk factors in obese children in relation to weight and body fat distribution, J. Am. Coll. Nutr. 11(NS), 41S-50S (1992).PubMedGoogle Scholar
  26. 26.
    M. I. Goran, Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity, and food intake, Pediatrics 101, 505–518 (1998).PubMedCrossRefGoogle Scholar
  27. 27.
    N. F. Chu, E. B. Rimm, D. J. Wang, H. S. Liou, and S. M. Shieh, Relationship between anthropometric variables and lipid levels among school children: the Taipei children heart study, Int. J. Obes. 22, 66–72 (1998).CrossRefGoogle Scholar
  28. 28.
    R. K. Chandra and K. M. Kutty, Immunocompetence in obesity, Acta Paediatr. Scand. 25, 25–30 (1980).Google Scholar
  29. 29.
    S. L. Lowy, J. S. Fisler, E. J. Drencik, I. F. Hunt and M. E. Swendseid, Zinc and copper nutriture in obese men receiving very low calorie diets of soy or collagen protein, Am. J. Clin. Nutr. 43, 272–287 (1986).PubMedGoogle Scholar
  30. 30.
    L. Perrone, G. Gialanella, R. Moro, S. L. Feng, E. Boccia, G. Palombo, et al., Zinc, copper, and iron in obese children and adolescents, Nutr. Res. 18, 183–189 (1998).CrossRefGoogle Scholar
  31. 31.
    R. S. Gibson, Assessment of trace-element status, in Principles of Nutritional Assessment, R. S. Gibson, ed., Oxford University Press, New York, pp. 511–576 (1990).Google Scholar
  32. 32.
    R. J. Cousins, Zinc, in Present Knowledge in Nutrition, 7th ed., E. E. Ziegler and L. J. Filer, eds., International Life Sciences Institute Nutrition Foundation, Washington, DC, pp. 293–306 (1996).Google Scholar
  33. 33.
    R. L. Atkinson, W. T. Dahms, G. A. Bray, R. Jacob, and H. H. Sandstead, Plasma zinc and copper in obesity and after intestinal bypass, Ann. Intern. Med. 89, 491–493 (1978).PubMedGoogle Scholar
  34. 34.
    J. C. King and C. L. Keen, Zinc, in M. E. Shils, J. A. Olson, and M. Shike eds., Modern Nutrition in Health and Disease, 8th ed., Lea & Febiger, Philadelphia, Vol. 1, pp. 214–230 (1994).Google Scholar
  35. 35.
    L. J. Hinks and B. E. Clayton, Zinc and copper concentrations in leucocytes and erythocytes in healthy adults and the effect of oral contraceptives, J. Clin. Pathol. 36, 1016–1021 (1983).PubMedGoogle Scholar
  36. 36.
    D. L. Donaldson, C. C. Smith, and M. S. Walker, Tissue zinc and copper levels in diabetic C57BL/KsJ (ob/ob) mice fed a zinc — deficient diet: lack of vidence for specific depletion of tissue zinc stores, J. Nutr. 118, 1502–1508 (1998).Google Scholar
  37. 37.
    N. Begin-Heick, M. Dalpe-Scott, J. Rowe, and H. M. C. Heick, Zinc supplementation attenuates secretory activity in pancreatic islets of the ob/ob mouse, Diabetes 34, 179–184 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    E. R. Arquilla, P. Thiene, T. Brugman, W. Ruess, and R. Sugiyama, Effects of zinc ion on the conformation of antigenic determinants, Biochem. J. 175, 289–297 (1978).PubMedGoogle Scholar
  39. 39.
    A. S. Levine, C. J. MacClain, B. S. Handwerger, D. M. Brown, and J. E. Morley, Tissue zinc of status of genetically diabetic and streptozotocin-induced diabetic mice, Am. J. Clin. Nutr. 37, 382–386 (1983).PubMedGoogle Scholar
  40. 40.
    M. D. Chen, S. Liou, P. Lin, V. V. Yang, P. S. Alexander, and W. H. Lin, Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice, Biol. Trace Element Res. 61, 303–311 (1998).Google Scholar
  41. 41.
    L. Coulston and P. Dandona, Insulin-like effects of zinc on adipocytes, Diabetes 29, 665–667 (1980).PubMedCrossRefGoogle Scholar
  42. 42.
    G. Martino, M. G. Matera, B. Martino, C. Vacca, S. Martino, and F. Rossi, Relationship between zinc and obesity, J. Med. 24, 177–183 (1993).PubMedGoogle Scholar
  43. 43.
    M. L. Kennedy and M. L. Failla, Zinc metabolism in genetically obese (ob/ob) mice, J. Nutr. 117, 886–893 (1987).PubMedGoogle Scholar
  44. 44.
    P. J. Collipp, New development in medical therapy of obesity, Pediatr. Ann. 13, 465–472 (1984).PubMedGoogle Scholar
  45. 45.
    M. D. Chen, P. Y. Lin, and W. H. Lin, Investigation of the relationships between zinc and obesity, Kao Hsiungl Hsue Hko Hsueh Tsa Chin. 7, 628–634 (1991).Google Scholar
  46. 46.
    T. Brody, Nutritional Biochemistry, Academic Press, San Diego, p. 588 (1994).Google Scholar
  47. 47.
    H. A. Guthrie and M. F. Picciano, Micronutrient Minerals, in: H. A. Guthrie and M. F. Picciano, eds., Human Nutrition, Mosby, New York, pp. 351–357 (1994).Google Scholar
  48. 48.
    V. Iyengar and J. Wolttiez, Trace elements in human clinical specimens: Evaluation of literature data to identity references values, Clin. Chem. 34(5), 474–481 (1988).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Dilina Do Nascimento Marreiro
    • 1
  • Mauro Fisberg
    • 2
    • 3
  • Silvia Maria Franciscato Cozzolino
    • 1
  1. 1.Department of Food Science and Experimental Nutrition, School of PharmacyUniversity of São PauloSão PauloBrazil
  2. 2.Adolescent CenterFederal University of São PauloBrazil
  3. 3.Nutrition CenterSão Marcos UniversitySão PauloBrazil

Personalised recommendations