Skip to main content
Log in

Effects of ionic valency of interacting metal elements in ion uptake by carrot (Daucas carota cv. U.S. harumakigosun)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Interaction of elements in the course of element uptake by carrot (Daucas carota cv. U.S. harumakigosun) exerted by the addition of elements, such as Rb, Zn, and Al, was investigated. For the purpose of precise evaluation of uptake behavior, the simultaneous determination of absorption of Na, Be, Sr, Mn, Co, Zn, Ce, Pm, and Gd was conducted by the multitracer technique. For root uptakes, Al exhibited its influence on the uptake of essential elements and on the uptake of toxic or unbeneficial ones, presumably as a result of the large electric valency that caused cell membrane disintegrity. On the other hand, Zn as a divalent cation only affected the uptake of essential and beneficial elements. Rubidium, which is a monovalent cation, did not exhibit any effect on the uptake of other ions. Concerning shoot uptakes, inhibition by Zn and Al, but not by Rb, was observed for the uptake of Sr, Mn, Co, and Zn. From the preent investigation, it is suggested that there exists an interaction between added ions and the elements taken into plants and that the degree of interaction increases in the increasing order of ionic valency: M+ (Rb), M2+ (Zn), and M3+ (Al).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Huang, J. E. Shaff, D. L. Grunes, and L. V. Kochian, Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars, Plant Physiol. 98, 230–237 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. Z. Rengel and D. L. Robinson, Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots, I. Kinetics, Plant Physiol. 91, 1407–1413 (1989).

    PubMed  CAS  Google Scholar 

  3. H. Stienen and J. Bauch, Element content in tissue of spruce seedlings from hydroponic cultures simulating acidification and deacidification, Plant Soil 106, 231–238 (1988).

    Article  CAS  Google Scholar 

  4. C. L. Fernando and S. H. Fernando, Effects of copper toxicity on growth and the uptake and translocation of metals in rice plants, J. Plant Nutr. 16, 1449–1464 (1993).

    Google Scholar 

  5. S. Ambe, T. Shinonaga, T. Ozaki, S. Enomoto, H. Yasuda, and S. Uchida, Ion competition effects on the selective absorption of radionuclides by komatsuna (Brassica rapa var. Perviridis), Environ. Exp. Bot. 41, 185–194 (1999).

    Article  CAS  Google Scholar 

  6. A. A. Meharg and M. R. Macnair, Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L., J. Exp. Bot. 43, 519–524 (1992).

    Article  CAS  Google Scholar 

  7. S. Ambe, S. Y. Chen, Y. Ohkubo, Y. Kobayashi, M. Iwamoto, M. Yanokura, et al., Preparation of radioactive multitracer solution from gold foil irradiated by 135 MeV/nucleon 14N ions, Chem. Lett. 149–152 (1991).

  8. S. Ambe, S. Y. Chen, Y. Ohkubo, Y. Kobayashi, M. Iwamoto, M. Yanokura, et al., Preparation of radioactive multitracer solutions from Au, Ag, and Cu foils irradiated with high-energy heavy ions, Anal. Sci. 7(Suppl.), 317–320 (1991).

    CAS  Google Scholar 

  9. S. Ambe, Y. Ohkubu, Y. Kobayashi, M. Iwamoto, H. Maeda, and M. Yanokura, Multitracer study on transport and distribution of metal ions in plants, J. Radioanal. Nucl. Chem. 195, 305–313 (1995).

    Article  CAS  Google Scholar 

  10. T. Ban-nai, Y. Muramatsu, S. Yoshida, S. Uchida, S. Shibata, S. Ambe, et al., Multitracer study on the accumulation of radionuclides in mushrooms, J. Radiat. Res. 38, 213–218 (1997).

    PubMed  CAS  Google Scholar 

  11. T. Shinonaga and S. Ambe, Multitracer study on absorption of radionuclides in atmosphere-plant model system, Water Air Soil Pollut. 101, 93–103 (1998).

    Article  CAS  Google Scholar 

  12. S. Gouthu, R. G. Weginwar, T. Arie, S. Ambe, T. Ozaki, S. Enomoto, et al., Subcellular distribution and translocation of radionuclides in plants, Environ. Toxicol. Chem. 18, 2023–2027 (1999).

    Article  CAS  Google Scholar 

  13. S. Ambe, T. Ozaki, S. Enomoto, and T. Shinonaga, Multitracer study on the soil-to-plant transfer of radionuclides in komatsuna at different growth stages, Environ. Technol. 20, 111–116 (1999).

    Article  CAS  Google Scholar 

  14. T. Shinonaga, S. Ambe, and I. Yamaguchi, Uptake and distribution of trace elements in maturing soybean, Biol. Trace Element Res. 68, 235–248 (1999).

    CAS  Google Scholar 

  15. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, F. Ambe, and M. Yoshihiro, Beneficial effect of rare earth element on the growth of Dryopteris erythrosora, J. Plant Physiol. 156, 330–334 (2000).

    CAS  Google Scholar 

  16. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, F. Ambe, and Y. Makide, Influence of aluminum on the uptake of various cations from a solution into carrots, J. Radioanal. Nucl. Chem. 235, 285–289 (1998).

    Article  CAS  Google Scholar 

  17. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, F. Ambe, and Y. Makide, Effect of zinc on the uptake of various elements into carrot, J. Radioanal. Nucl. Chem. 242, 703–707 (1999).

    Article  CAS  Google Scholar 

  18. D. L. Godbold, E. Frits, and A. Hüttermann, Aluminium toxicity and forest decline, Proc. Natl. Acad. Sci. USA 85, 3888–3892 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. H. Marschner, Mechanism of adaptation of plants to acid soils, Plant Soil 134, 1–20 (1991).

    CAS  Google Scholar 

  20. H. Matsumoto, Repression of proton extrusion from intact cucumber roots and the proton transport rate of microsomal membrane vesicles of the roots due to Ca2+ starvation, Plant Cell Physiol. 29, 79–84 (1988).

    CAS  Google Scholar 

  21. H. Matsumoto, Cell biology of alumium toxicity and tolerance in higher plants, Int. Rev. Cytol. 200, 1–46 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. H. Marschner, Beneficial mineral elements, in Mineral Nutrition of Higher Plants, Academic, London, pp. 405–435 (1995).

    Google Scholar 

  23. C. R. Caldwell and A. Haug, Temperature dependence of the barley root plasma membrane-bound Ca2+ and Mg2+-dependent ATPase, Physiol. Plant. 53, 117–124 (1981).

    Article  CAS  Google Scholar 

  24. R. L. Legge, E. Thompson, J. E. Baker, and M. Lieberman, The effect of calcium on the fluidity and phase properties of microsomal membranes isolated from postclimacteric Golden Delicious apples, Plant Cell Physiol. 23, 161–169 (1982).

    CAS  Google Scholar 

  25. J. Lynch, G. R. Cramer, and A. Läuchli, Salinity reduces membrane-associated calcium in corn root protoplasts, Plant Physiol. 83, 390–394 (1987).

    PubMed  CAS  Google Scholar 

  26. Z. Rengel and D. C. Elliott, Mechanism of aluminum inhibition of net 45Ca2+ uptake by Amaranthus protoplasts, Plant Physiol. 98, 632–638 (1992).

    PubMed  CAS  Google Scholar 

  27. Z. Rengel, Role of calcium in aluminium toxicity, New Phytol. 121, 499–514 (1992).

    Article  CAS  Google Scholar 

  28. Z. Rengel, Effects of Al, rare earth elements and other metals on net 45Ca2+ uptake by Amaranthus protoplasts, J. Plant Physiol. 143, 47–51 (1995).

    Google Scholar 

  29. Z. Rengel, The role of calcium in salt toxicity, Plant Cell Environ. 15, 625–632 (1992).

    Article  CAS  Google Scholar 

  30. H. W. Woolhouse, in Encyclopedia of Plant Physiology, New Series, Volume 12C, Springer-Verlag, Berlin, (1983).

    Google Scholar 

  31. J. P. Gaur and N. Noraho, Adsorption and uptake of cadmium by Azolla pinnata: kinetics of inhibition by cations, Biomed. Environ. Sci. 8, 149–157 (1995).

    PubMed  CAS  Google Scholar 

  32. C. H. Evans, Interesting and useful biochemical properties of lanthanides, Trends Biochem. Sci. 8, 445–449 (1983).

    Article  CAS  Google Scholar 

  33. F. Rubio, W. Gassmann, and J. I. Schroeder, Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance, Science 270, 1660–1663 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. S. Gassman, F. Rubio, and J. I. Schroeder, Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1, Plant J. 105, 852–869 (1996).

    Google Scholar 

  35. C. Schimansky, Der Einfluss einiger Versuchsparameter auf das Fluxverhalten von 28Mg bei Sinapis alba, Arch. Acker-Pflanzenvau Bodenkd. 15, 671–682 (1981).

    Google Scholar 

  36. H. J. M. Bowen, Environmental Chemistry of the Elements, Academic, London (1979).

    Google Scholar 

  37. M. Koyama, M. Shirakawa, J. Takada, Y. Katayama, and T. Matsubara, Trace elements in land plants: concentration ranges and accumulators of rare earths, Ba, Ra, Mn, Co and heavy halogens, J. Radioanal. Nucl. Chem. 112, 489–506 (1987).

    Article  CAS  Google Scholar 

  38. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, and Y. Makide, A survey of trace elements in pteridophytes, Biol. Trace Element Res. 74, 259–273 (2000).

    Article  CAS  Google Scholar 

  39. S. Ambe, S. Y. Chen, Y. Ohkubo, Y. Kobayashi, H. Maeda, M. Iwamoto, et al., “Multi-tracer” a new tracer technique — its principle features, and application, J. Radioanal. Nucl. Chem. 195, 297–303 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozaki, T., Ambe, S., Minal, Y. et al. Effects of ionic valency of interacting metal elements in ion uptake by carrot (Daucas carota cv. U.S. harumakigosun). Biol Trace Elem Res 84, 197–211 (2001). https://doi.org/10.1385/BTER:84:1-3:197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:84:1-3:197

Index Entries

Navigation