Skip to main content
Log in

Investigation of the mechanisms affecting Cu and Fe bioavailability from legumes

Role of seed protein and antinutritional (nonprotein) factors

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chemical composition and content in polyphenols, phytic acid, and dietary fiber of whole cooked common bean (Phaseolus vulgaris L.) and faba bean (Vicia faba L.) and of soluble and insoluble fractions separated from them were determined. Simultaneous determination of Cu, Fe, and protein bioavailability in the small intestine of rat was carried out in single-dose, short-term (1 h) experiments. After cooking, about 80% of seed components (on a weight basis) of either legume was recovered in the precipitate (insoluble fraction) after extraction with water. Protein, lipid, starch, dietary fiber, and polyphenols underwent the most severe insolubilization, together with more than 70% of total Cu and Fe. Cu, Fe, and protein bioavailability showed a similar trend (i.e., the lower the protein, the lower the Cu and Fe availability). Availability of proteins, Cu, and Fe in the insoluble fractions were the lowest, but Cu bioavailability was higher than that of Fe in all fractions. The results provide evidence that the heat-induced insolubilization process adversely affects not only protein but also Cu and Fe bioavailability from legumes and that polyphenols are likely to be a major inhibitor on absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO-WHO, Trace Elements in Human Nutrition and Health, World Health Organization, Geneva (1996).

    Google Scholar 

  2. S. J. Fairweather-Tait and R. F. Hurrell, Bioavailability of minerals and trace elements, Nutr. Res. Rev. 9, 295–324 (1996).

    Article  Google Scholar 

  3. S. J. Fairweather-Tait, Trace element bioavailability, in Role of Trace Elements for Health Promotion and Disease Prevention, B. Sandstrom and P. Walter, eds., Karger, Basel, pp. 29–39 (1998).

    Chapter  Google Scholar 

  4. B. R. Rucker, B. Lonnerdal, and C. L. Keen, Intestinal absorption of nutritionally important trace elements, in Physiology of the Gastrointestinal Tract, 3rd ed., L. R. Johnson, ed., Raven, New York (1994).

    Google Scholar 

  5. R. F. Hurrell, S. R. Lynch, T. P. Trinidad, S. A. Dassenko, and J. D. Cook, Iron absorption in humans as influenced by bovine milk proteins, Am. J. Clin. Nutr. 49, 546–552 (1989).

    PubMed  CAS  Google Scholar 

  6. M. Layrisse, C. Martinez-Torrez, I. Leets, P. G. Taylor, and J. Ramirez, Effect of histidine, cysteine, glutathione or beef on iron absorption in humans, J. Nutr. 114, 217–223 (1984).

    PubMed  CAS  Google Scholar 

  7. L. A. Rubio, G. Grant, S. Bardocz, P. Dewey, and A. Pusztai, Mineral excretion of rats fed on diets containing faba beans (Vicia faba L) or faba bean fractions. Br. J. Nutr. 67, 295–302 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. A. J. M. Jansman, M. W. A. Houdijk, and M. W. A. Verstegen, Effects of condensed tannins in faba beans (Vicia faba L) on the availability of minerals in pigs, in Bioavailability ’93, U. Schlemmer, ed., BFE, Karlsruhe, Part 2, pp. 48–52 (1993).

    Google Scholar 

  9. J. R. Prohaska, Biochemical functions of copper in animals, in Essential and Toxic Trace Elements in Human Health and Disease, A. S. Prasad, ed., Alan R. Liss, New York, pp. 105–124 (1988).

    Google Scholar 

  10. R. F. Hurrell, M.-A. Juillerat, M. B. Reddy, S. R. Lynch, S. A. Dassenko, and J. D. Cook, Soy protein, phytate, and iron absorption in humans, Am. J. Clin. Nutr. 56, 573–578 (1992).

    PubMed  CAS  Google Scholar 

  11. S. R. Lynch, S. A. Dassenko, J. D. Cook, M.-A. Juillerat, and R. F. Hurrell, Inhibitory effect of a soybean-protein-related moiety on iron absorption in humans, Am. J. Clin. Nutr. 60, 567–572 (1994).

    PubMed  CAS  Google Scholar 

  12. A. J. M. Jansman, G. D. Hill, J. Huisman, and A. F. B. van der Poel, Recent Advances of Research in Antinutritional Factors in Legume Seeds, Wageningen Pers., Wageningen (1998).

  13. AOAC Official Methods of Analysis, 15th ed, Association of Official Analytical Chemists, Arlington, VA (1990).

  14. G. Fruhbeck, R. Alonso, F. Marzo, and S. Santidrian, A modified method for the indirect quantitative analysis of phytate in foodstuffs. Anal. Biochem. 225, 206–212 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. M. Carbonaro, G. Grant, M. Cappelloni, and A. Pusztai, Perspectives into factors limiting in vivo digestion of legume proteins: antinutritional compounds or storage proteins? J. Agric. Food Chem. 48, 742–749 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. G. Grant, P. M. Dorward, and A. Pusztai, Pancreatic enlargement is evident in rats fed diets containing raw soybeans (Glycine max) or cowpea (Vigna unguiculata) for 800 days but not in those fed diets based on kidney beans (Phaseolus vulgaris) or lupinseed (Lupinus angustifolius), J. Nutr. 123, 2207–2215 (1993).

    PubMed  CAS  Google Scholar 

  17. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  18. R. Ali and M. Muzquiz, ANFs in tropical seed for human nutrition, in Recent Advances of Research in Antinutritional Factors in Legume Seeds. A. J. M. Jansman, G. D. Hill J. Huisman, and A. F. B. van der Poel, eds., Wageningen Pers., Wageningen pp. 107–129 (1998).

  19. L. A. Rubio, G. Grant, S. Bardocz, P. Dewey, and A. Pusztai, Nutritional response of growing rats to faba bean (Vicia faba L, minor) and faba bean fractions, Br. J. Nutr. 66, 533–542 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. E. Carnovale and C. Lintas, Dietary fiber: effect of processing and nutrient interactions, Eur. J. Clin. Nutr. 49, S307–S311 (1995).

    PubMed  Google Scholar 

  21. K. H. McWatters, and M. R. Holmes, Influence of pH and salt concentration on nitrogen solubility and emulsification properties of soy flour, J. Food Sci. 44, 770–773 (1979).

    Article  CAS  Google Scholar 

  22. M. Carbonaro, P. Vecchini, and E. Carnovale, Protein solubility of raw and cooked bean (Phaseolus vulgaris): role of the basic residues, J. Agric. Food Chem. 41, 1169–1175 (1993).

    Article  CAS  Google Scholar 

  23. M. Carbonaro, M. Cappelloni, S. Nicoli, M. Lucarini, and E. Carnovale, Solubility-digestibility relationship of legume proteins, J. Agric. Food Chem. 45, 3387–3394 (1997).

    Article  CAS  Google Scholar 

  24. N. R. Reddy, M. D. Pierson, S. K. Sathe, and D. K. Salunkhe, in Phytates in Cereals and Legumes. N. R. Reddy, ed., CRC, Boca Raton, FL (1989).

    Google Scholar 

  25. E. Haslam, Practical Polyphenolic. From Structure to Molecular Recognition and Physiological Action, Cambridge University Press, Cambridge (1998).

    Google Scholar 

  26. V. Sgarbieri, E. M. V. Clarke, and A. Pusztai, Proteolytic breakdown of kidney bean (P. vulgaris) storage proteins: nutritional implications. J. Sci. Food Agric. 33, 881–891 (1982).

    Article  CAS  Google Scholar 

  27. G. J. Van den Berg, S. Yu, A. G. Lemmens, and A. C. Beynen, Dietary ascorbic acid lowers the concentration of soluble copper in the small intestinal lumen of rats, in Trace Elements in Man and Animals, M. Anke, D. Meissner, and C. F. Mills, eds. Verlag Media Touristik, Gersdorf, pp. 402–403 (1993).

    Google Scholar 

  28. G. Rimbach and J. Pallauf, Cadmium accumulation, zinc status, and mineral bioavailability of growing rats fed diets high in zinc with increasing amounts of phytic acid, Biol. Trace Element Res. 57, 59–70 (1997).

    CAS  Google Scholar 

  29. M. Carbonaro, F. Virgili, and E. Carnovale, Evidence for protein-tannin interaction in legumes: implications in the antioxidant properties of faba bean tannins, Lebensm-Wiss. Technol. 29, 743–750 (1996).

    Article  CAS  Google Scholar 

  30. A. F. B. Van der Poel, L. M. W. Dellaert, A. Van Norel, and J. P. F. G. Helsper, The digestibility in piglets of faba bean (Vicia faba L.) as affected by breeding toward the absence of condensed tannins, Br. J. Nutr. 68, 793–800 (1992).

    Article  PubMed  Google Scholar 

  31. J. L. Greger, Nondigestible carbohydrates and mineral bioavailability, J. Nutr. 129, 1434S-1435S (1999).

    PubMed  CAS  Google Scholar 

  32. E. Skoglund, N.-G. Carlsson, and A.-S. Sandberg, Determination of isomers of inositol mono- to hexaphosphates in selected foods and intestinal contents using high-performance ion chromatography, J. Agric. Food Chem. 45, 431–436 (1997).

    Article  CAS  Google Scholar 

  33. H. Persson, M. Turk, M. Nyman, and M. Sandberg, Binding of Cu2+, Zn2+ and Cd2+ to inositol tri-, tetra-, penta-, and hexaphosphates, J. Agric. Food Chem. 46, 3194–3200 (1998).

    Article  CAS  Google Scholar 

  34. B. Lonnerdal, Bioavailability of copper, Am. J. Clin. Nutr. 63, 821S-829S (1996).

    PubMed  CAS  Google Scholar 

  35. T. Jacobsen and D. Slotfeldt-Ellingsen, Phytic acid and metal availability: a study of Ca and Cu binding, Cereal Chem. 60, 392–395 (1983).

    CAS  Google Scholar 

  36. G. Sarwar and R. W. Peace, Comparison between true digestibility of total nitrogen and limiting amino acids in vegetable proteins fed to rats, J. Nutr. 116, 1172–1184 (1986).

    PubMed  CAS  Google Scholar 

  37. L. Marletta, M. Carbonaro, and E. Carnovale, In vitro protein and sulphur amino acids availability as measure of bean protein quality, J. Sci. Food Agric. 59, 497–504 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbonaro, M., Grant, G., Mattera, M. et al. Investigation of the mechanisms affecting Cu and Fe bioavailability from legumes. Biol Trace Elem Res 84, 181–196 (2001). https://doi.org/10.1385/BTER:84:1-3:181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:84:1-3:181

Index Entries

Navigation