Skip to main content

Report on the levels of cadmium, lead, and mercury in imported rice grain samples

Abstract

In an attempt to know whether highly consumed food might contribute to metal exposure, we analyzed cadmium, lead, and mercury in 27 rice grain samples commonly consumed in Saudi Arabia by atomic absorption spectrometry after acid digestion. The mean concentrations and ranges of cadmium, lead, and mercury in tested rice samples were 20.261 (range <DL-178.026 µg/kg), 134.819 (range 23.1–1529.0 µg/kg), and 3.186 (range <DL-43.573 µg/kg), respectively. The results showed high concentrations of metals and in some cases exceeded the Provisional Tolerance Weekly Intake (PTWI) recommended by FAO/WHO. It was also noted that different rice grain samples had varying concentrations of these metals. Because the bulk of literature warns against the cumulative effects of prolonged heavy metal exposure, regular consumption of rice by local populations might pose potential health problems.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. B. Sterrett, R. L. Chaney, C. H. Gifford, and H. W. Mielke, Influence of fertilizer and sewage sludge compost on yield and heavy metal accumulation by lettuce grown in urban soils, Environ. Geochem. Health 18, 135–142 (1996).

    Article  Google Scholar 

  2. 2.

    T. C. Herrero and F. L. Martin, Evaluation of cadmium levels in fertilized soils, Bull. Environ. Contam. Toxicol. 50, 61–68 (1993).

    Article  Google Scholar 

  3. 3.

    G. Gupta and S. Charles, Trace elements in soils fertilized with poultry litter, Poul. Sci. 78, 1695–1698 (1999).

    CAS  Google Scholar 

  4. 4.

    M. D. Taylor, Accumulation of cadmium derived from fertilizers in New Zealand soils, Sci. Total Environ. 208, 123–126 (1997).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    H. W. Mielke and P. L. Reagan, Soil is an important pathway of human lead exposure, Environ. Health Perpect. 106(Suppl. 1), 217–229 (1998).

    Article  CAS  Google Scholar 

  6. 6.

    M. Schuhmacher, J. Batista, J. L. Domingo, and J. Corbella, Mercury concentrations in autopsy tissues from inhabitants of Tarragona Province, Spain, Trace Elements Elect. 13, 75–79 (1996).

    CAS  Google Scholar 

  7. 7.

    R. Nakagawa and Y. Yumita, Change and behaviour of residual mercury in paddy soils and rice of Japan, Chemosphere 37, 1483–1487 (1998).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    T. Watanabe, A. Koizumi, H. Fujita, M. Kumai, and M. Ikeda, Role of rice in dietary cadmium intake of farming population with no known man-made pollution in Japan, Tohoku J. Exp. Med. 114, 83–90 (1984).

    Article  Google Scholar 

  9. 9.

    C. S. Moon, Z. W. Zhang, S. Shimbo, T. Watanabe, D. H. Moon, C. U. Lee, et al., Dietary intake of cadmium and lead among the general population in Korea, Environ. Res. 71, 46–54 (1995).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Z. W. Zhang, R. D. Subida, M. G. Agetano, H. Nakatsuka, N. Inoguch, T. Watanabe, et al., Non-occupational exposure of adult women in Manila, the Philippines to lead and cadmium, Sci. Total Environ. 215, 157–165 (1998).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Z. W. Zhang, S. Shimbo, T. Watanabe, S. Srianujata, O. Banjong, C. Chitchumrooncokchai, et al., Non-occupational lead and cadmium exposue of adult women in Bangkok, Thailand, Sci. Total Environ. 226, 65–74 (1999).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Z. W. Zhang, C. S. Moon, T. Watanabe, S. Shimbo, F. S. He, Y. Q. Wu, et al., Background exposure of urban populations to lead and cadmium: comparison between China and Japan, Int. Arch. Occup. Environ. Health 69, 273–281 (1997).

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    S. Muramoto, Heavy metal tolerance of rice plants (Oryza sativa L.) to some metal oxides at the critical levels, J. Environ. Sci. Health 24, 559–568 (1989)

    CAS  Article  Google Scholar 

  14. 14.

    T. Mckenzie, Analytical data for the GTA-96, in Analytical Methods for Graphite Tube Atomizer, E. Rothery, ed., Varian Tectron Pty. Ltd., Milgrave, Victoria, Australia (1988).

    Google Scholar 

  15. 15.

    Annual Marketing Plan, Market Information Report, American Embassy, Riyadh, Saudi Arabia 62 Post Report Sequence Number: 004 (1996).

  16. 16.

    M. Schuhmacher, J. L. Domingo, J. M. Llobet, and J. Corbella, Cadmium, chromium, copper, and zinc in rice and rice field soil from southern Catalonia, Spain, Bull. Environ. Contam. Toxicol. 53, 54–60 (1994).

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Z. Zhang, C. Moon, T. Watanabe, S. Shimbo, and M. Ikeda, Contents of pollutant and nutrient elements in rice and wheat grown on the neighboring fields, Biol. Trace Element Res. 57, 39–50 (1997).

    CAS  Google Scholar 

  18. 18.

    M. C. Jung and I. Thornton, Environmental contamination and seasonal variation of metals in soils, plants and waters in paddy fields around a Pb-Zn mine in Korea, Sci. Total Environ. 198, 105–121 (1997).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Minitry of Agriculture Food and Fishery, MAFF UK-1994 total diet study: metals and other elements. Joint Food Safety and Standard Group, Food Surveillance Information Sheet. Number 131 (1997).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iman Al-Saleh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Al-Saleh, I., Shinwari, N. Report on the levels of cadmium, lead, and mercury in imported rice grain samples. Biol Trace Elem Res 83, 91–96 (2001). https://doi.org/10.1385/BTER:83:1:91

Download citation

Index Entries

  • Cadmium
  • lead
  • mercury
  • rice
  • atomic absorption spectrophotometer
  • vapour generator accessory