Skip to main content
Log in

Mineral content of calcified tissues in cystic fibrosis mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although abnormal hard tissue mineralization is a recognized complication of cystic fibrosis (CF), the pathogenesis leading from the defective cystic fibrosis transmembrane conductance regulator (CFTR) protein is poorly understood. We hypothesized that CFTR plays a direct role in the mineralization of bone and teeth and tested the hypothesis using CF mouse models [CFTR(−) mice]. In vivo measurements by dual-emission X-ray absorpitometry (DEXA) indicated that bone mineral density (BMD) was reduced in CF mice as compared to gender-matched littermates. However, no change was evident after correction of BMD for the covariant of body weight. The latter finding was confirmed in isolated femurs and nasal bones by standard dry-ashing and instrumental neutron activation analysis (INAA). INAA of the continuously growing hypsodont incisor teeth from CFTR(−) mice revealed reduced Ca and normal P in the enamel layer—a finding consistent with changes in the deciduous teeth of CF children. Interestingly, enamel fluoride was increased in the CFTR(−) incisors and may associate with abnormal enamel crystallite formation. The iron content of the incisor enamel was reduced, explaining the loss of yellow pigmentation in CFTR(−) incisors. In contrast to the incisors, the mineral content of the slow-growing brachydont molar teeth was not different between CFTR(−) and CFTR(+) mice. It was concluded that CFTR does not play a direct role in the mineralization of bones or brachydont teeth in mice. Functional CFTR is apparently required for normal mineralization of the hypsodont incisors. However, multiple changes in the mineral composition of the CF incisors suggest an indirect role for CFTR, perhaps by maintaining a normal salivary environment for continuous tooth eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Collins, Cystic fibrosis: molecular biology and therapeutic implications, Science 256, 774–779 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. M. P. Anderson, R. J. Gregory, S. Thompson, S. Souza, S. Paul, R. C. Mulligan, et al., Demonstration that CFTR is a chloride channel by alteration of its anion selectivity, Science 253, 202–205 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. M. A. Gray, S. Plant, and B. E. Argent, cAMP-Regulated whole cell chloride currents in pancreatic duct cells, Am. J. Physiol. 264, C591-C602 (1993).

    PubMed  CAS  Google Scholar 

  4. M. J. Welsh, L.-C. Tsui, T. F. Boat, and A. L. Beaudet, Cystic fibrosis, in Metabolic and Molecular Basis of Inherited Disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, D. Valle, and D. S. Fredrickson, eds., McGraw Hill, New York, pp. 2649–2680 (2000).

    Google Scholar 

  5. S. Ott and M. Aitken, Osteoporosis in patients with cystic fibrosis, Clin. Chest Med. 19, 555–567 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. G. S. Bhudhikanok, J. Lim, R. Marcus, A. Harkins, R. B. Moss, and L. K. Bachrach, Correlates of osteopenia in patients with cystic fibrosis, Pediatrics 97, 103–111 (1996).

    PubMed  CAS  Google Scholar 

  7. L. K. Bachrach, C. W. Loutit, and R. B. Moss, Osteopenia in adults with cystic fibrosis, Am. J. Med. 96, 27–34 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. I. Wallman and H. Hiton, Teeth pigmented by tetracycline, Lancet 2, 827–829 (1962).

    Article  Google Scholar 

  9. K. Baker, The fluorescent, microradiographic, microhardness and specific gravity properties of tetracycline-affected human enamel and dentine, Arch. Oral Biol. 17, 526–536 (1972).

    Google Scholar 

  10. R. Primosch, Tetracycline discoloration, enamel defects, and dental caries in patients with cystic fibrosis, Oral Surg. 50, 301–308 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. F. Cua, Calcium and phosphorus in teeth from children with and without cystic fibrosis, Biol. Trace Element Res. 30, 277–289 (1991).

    CAS  Google Scholar 

  12. A. Lapey, Steatorrhea and azatorrhea and their relation to growth and nutrition in adolescents and young adults with cystic fibrosis, J. Pediatr. 84, 328–334 (1974).

    Article  PubMed  CAS  Google Scholar 

  13. J. J. Lim, R. B. Moss, J. Palmer, E. A. Harkins, and L. K. Bachrach, Bone Mineral status in cystic fibrosis: risk factors for osteopenia, Pediatr. Pulmonol. 9, 278A (1993).

    Google Scholar 

  14. J. Snouwaert, K. Brigman, A. Latour, N. Malouf, R. C. Boucher, O. Smithies, et al., An animal model for cystic fibrosis made by gene targeting, Science 257, 1083–1088 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. B. G. Zeiher, E. Eichwald, J. Zabner, J. J. Smith, A. P. Puga, P. B. McCray, Jr. et al., A mouse model for the ΔF508 allele of cystic fibrosis, J. Clin. Invest. 96, 2051–2064 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. E. A. Eckman, C. U. Cotton, D. M. Kube, and P. B. Davis, Dietary changes improve survival of CFTR S489X homzygous mutant mouse, Am. J. Physiol. 269, L625-L630 (1995).

    PubMed  CAS  Google Scholar 

  17. L. L. Clarke, L. R. Gawenis, C. Franklin, and M. C. Harline, Increased survival of CFTR knockout mice with an oral osmotic laxative, Lab. Animal Sci. 46, 612–618 (1996).

    CAS  Google Scholar 

  18. J. Wright, K. Hall, and B. R. Grubb, Abnormal enamel development in a cystic fibrosis transgenic mouse model, J. Dent. Res. 75, 966–973 (1996).

    PubMed  CAS  Google Scholar 

  19. A. DeBlase, Rodentia, in Synopsis and Classification of Living Organisms, S. P. Parker, ed., McGraw Hill, New York, pp. 1045–1046 (1982).

    Google Scholar 

  20. E. M. Laursen, C. Molgaard, K. F. Michaelsen, C. Koch, and J. Muller, Bone mineral status in 134 patients with cystic fibrosis, Arch. Dis. Child. 81, 235–240 (1999).

    PubMed  CAS  Google Scholar 

  21. F. Salamoni, M. Roulet, F. Gudinchet, M. Pilet, D. Thiebaud, and P. Burckhardt, Bone mineral content and body composition in cystic fibrosis patients—correlation with fatfree mass, Arch. Dis. Child. 74, 314–318 (1996).

    PubMed  CAS  Google Scholar 

  22. R. C. Henderson and C. D. Madsen, Bone mineral content and body composition in children and young adults with cystic fibrosis, Pediatr. Pulmonol. 27, 80–84 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. J. Wright, K. Hall, and B. R. Grubb, Enamel mineral composition of normal and cystic fibrosis transgenic mice, Adv. Dent. Res. 10, 270–275 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. P. K. DenBesten, Effects of fluoride on protein secretion and removal during enamel development in the rat, J. Dent. Res. 65, 1272–1277 (1986).

    CAS  Google Scholar 

  25. M. Okazaki, J. Takahashi, and H. Kimura, Magnesium action and its interrelation to fluoride in apatite crystals, in Tooth Enamel V, R. W. Fearnhead, ed., Florence Publishers, Yokohama, pp. 344–352 (1989).

    Google Scholar 

  26. B. Angmar-Mansson, U. Lindh, and G. M. Whitford, Enamel and dentin fluoride levels and fluorosis following single fluoride doses: a nuclear microprobe study, Caries Res. 24, 258–262 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. F. Brudevold, Y. Bakhos, and R. Aasenden, Dental fluorosis as related to the concentration of fluoride in teeth and bones, J. Am. Dent. Assoc. 96, 459–463 (1978).

    PubMed  CAS  Google Scholar 

  28. G. M. Whitford, Determinants and mechanisms of enamel fluorosis, Ciba Found. Symp. 205, 226–241 (1997).

    PubMed  CAS  Google Scholar 

  29. K. S. Prosak and Z. Skobe, Anion translocation through the enamel organ, Adv. Dent. Res. 10, 238–244 (1996).

    Google Scholar 

  30. T. Odajama and M. Onishi, The state of chlorine in human dental enamel and dentine, in Tooth Enamel V, R. W. Fearnhead, ed., Florence Publishers, Yokohama, pp. 360–366 (1989).

    Google Scholar 

  31. S. Ratner, The iron content of teeth of normal and anemic rats, J. Dent. Res. 15, 89–92 (1935).

    CAS  Google Scholar 

  32. A. Halse, Electron microprobe analysis of iron content of incisor enamel in some species of rodentia, Arch. Oral Biol. 19, 7–11 (1974).

    Article  PubMed  CAS  Google Scholar 

  33. A. R. Ness, Eruption rates of impeded and umimpeded mandibular incisors of the adult laboratory mouse, Arch. Oral Biol. 10, 439–451 (1965).

    Article  PubMed  CAS  Google Scholar 

  34. J. M. Coady, P. D. Toto, and M. V. Santangelo, Histology of the mouse incisor, J. Dent. Res. 46, 384–388 (1967).

    PubMed  CAS  Google Scholar 

  35. L. L. Clarke, J. M. Camden, L. R. Gawenis, L. S. Hillman, J. S. Morris and J. T. Turner, Abnormal tooth mineralization and salivary electrolyte composition in the CFTR knockout mouse, J. Dent. Res. 76, 295 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Preliminary reports published in Pediatric Pulmonology, 14, 253A (1997) and 15, 253A (1998).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawenis, L.R., Spencer, P., Hillman, L.S. et al. Mineral content of calcified tissues in cystic fibrosis mice. Biol Trace Elem Res 83, 69–81 (2001). https://doi.org/10.1385/BTER:83:1:69

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:83:1:69

Index Entries

Navigation