Skip to main content
Log in

Increased absorption of zinc from alimentary tract in primary arterial hypertension

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc absorption from the alimentary tract, as revealed by serum zinc concentration, was studied in a group of 10 patients (age 37.7±5.1 yr) with moderate and severe untreated primary arterial hypertension before and after a 30-d treatment with perindopril 4 mg/d. Blood pressure was 177.33±16.24/111.33±15.26 mm Hg before and 143.41±17.34/91.29±12.54 mm Hg after treatment (p<0.05/p<0.05). Nine persons (age 37±6.2 yr) with normal blood pressure (121.33±9.9/78±5.23 mm Hg) were the control group. Blood samples were taken from the ulnar vein at 8.00 am (0 h), before taking zinc orally (one tablet of Zincas (zinc aspartate), containing 5 mg Zn2+) and at 1, 3, and 6 h after the dose. Serum zinc concentration in control and hypertensive group (before treatment) were initially 15.47±6.26 versus 15.99±5.65 (NS), 19.37±6.40 versus 20.83±4.48 (NS) after 1 h, 17.91±4.76 versus 31.32±10.49 (p<0.003) after 3 h, and 15.32±5.47 versus 17.87±6.56 (NS) after 6 h. Maximal increase of Zn was 4.77±2.10 versus 17.53±4.13, respectively (p<0.001). In the hypertensive group, serum Zn before and after perindopril treatment was initially 15.98±5.65 versus 14.81±3.11 (NS), 20.83±4.48 versus 18.17±2.50 (NS) after 1 h, 31.32±10.49 versus 22.94±5.80 (NS) after 3 h, 17.53±4.13 (p<0.001) after 6 h. Maximal increase of Zn before treatment was 17.53±4.13 versus 9.17±4.67 (p<0.017) after treatment. The following conclusions were reached: (1) In patients with primary arterial hypertension, an increased zinc absorption from alimentary tract was found; (2) A 30-d perindopril treatment 4 mg/d orally decreased zinc absorption in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73, 79–117 (1993).

    PubMed  CAS  Google Scholar 

  2. R. Girchev and K. Tzachev, Metabolism and homeostasis of zinc and cooper, Acta Physiol. Pol. 39(suppl. 32), 103–116 (1988).

    PubMed  CAS  Google Scholar 

  3. M. Calero, A. Sampalo, and J. E. Millan, Changes in the activity of plasma renin and aldosterone induced by a pattern of increasing administration of zinc sulphate in normotensive individuals, Med. Clin. Barc. 92, 729–735 (1989).

    PubMed  CAS  Google Scholar 

  4. Anon., Megadose zinc intakes impairs immune responses, Nutr. Rev. 43, 141’143 (1985).

    Google Scholar 

  5. R. K. Chandra, Excessive intake of zinc impairs immune response, JAMA 252, 1443–1445 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. N. V. Davydenko, I. P. Smirnova, E. A. Kvasha, I. M. Gorbas, and A. V. Koblianskaia, Interrelationship between dietary intake of minerals and prevalence of hypertension, Vopr. Pitan. 6, 17–19 (1995).

    PubMed  Google Scholar 

  7. N. V. Davydenko, I. P. Smirnova, E. A. Kvasha, and I. M. Gorbas, The relationship between the copper and zinc intake with food and the prevalence of ischaemic heart disease and its risk factors, Lik. Sprava. 5–6, 73–77 (1995).

    PubMed  Google Scholar 

  8. H. Dahlheim, C. L. White, and J. Rothemund, Effect of zinc depletion on angiotensin I-converting enzyme in arterial walls and plasma of the rat, Miner. Electrolyte Metab. 15, 125–130 (1989).

    PubMed  CAS  Google Scholar 

  9. W. R. Harlan, J. R. Landis, R. L. Schmouder, N. G. Goldstein, and L. C. Harlan, Blood lead and blood pressure. Relationship in the adolescent and adult US population, JAMA 253, 530–534 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. J. W. Finley, P. E. Johnson, P. G. Reeves, R. A. Vanderpool, and M. Briske Anderson, Effect of bile/pancreatic secretions on absorption of radioactive or stable zinc, Biol. Trace Element Res. 42, 81–96 (1994).

    CAS  Google Scholar 

  11. J. Neve, M. Hanocq, A. Peretz, F. Abi Khalil, F. Pelen, J. P. Famaey, and J Fontaine, Pharmacokinetic study of orally administered zinc in humans: evidence for an enteral recirculation, Eur. J. Drug Metab. Pharmacokinet. 16, 315–323 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. R. Paniagua, R. Claure, D. Amato, E. Flores, A. Perez, and E. Exaire, Effects of oral administration of zinc and diiodohydroxyquinolein on plasma zinc levels of uremic patients, Nephron 69, 147–150 (1995).

    PubMed  CAS  Google Scholar 

  13. H. J. Holtmeier, M. Kuhn, and K. Rummel, Zink ein lebenswichtiges Mineral, Wissenschaftliche Verlagsgeselschaft MbH, Stuttgart, p. 13 (1976).

    Google Scholar 

  14. Z. Wang, S. A. Atkinson, F. P. Bertolo, S. Polberger, and B. Lonnerdal, Alternations in intestinal uptake and compartmentalization of zinc in response to short-term dexamethasone therapy or excess dietary zinc in piglets, Pediatr. Res. 33, 118–124 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. A. Golik, D. Modai, Z. Averbukh, M. Sheffy, A. Shamis, N. Cohen, U. Shaked, and E. Dolev, Zinc metabolism in patients treated with captopril versus enalapril, Metabolism 39, 665–670 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. H. Zumkley, H. P. Bertram, H. Vetter, W. Zidek, and H. Losse, Zinc metabolism during captropril treatment, Horm. Metab. Res. 17, 256–261 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. A. Golik, Z. Averbukh, M. Cohn, and D. Modai, Effect of diuretics on captopril-induced urinary zinc excretion, Eur. J. Clin. Pharmacol. 38, 359–363 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. J. G. Henrotte, M. Santarromana, G. Franck, and R. Bourdon, Blood and tissue zinc levels in spontaneously hypertensive rats, J. Am. Coll. Nutr. 9, 340–344 (1990).

    PubMed  CAS  Google Scholar 

  19. H. M. Perry, M. W. Erlanger, and E. F. Perry, Inhibition of cadmium-induced hypertension in rats, Sci. Total Environt. 14, 153–166 (1980).

    Article  CAS  Google Scholar 

  20. J. G. Henrotte, M. Santarromana, G. Franck, P. Guicheney, R. Boulu, and R. Bourdon, High cardiac zinc levels in spontaneously hypertensive rats, J. Hypertens. 10, 553–557 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. S. Ripa and R. Ripa, Zinc and arterial pressure, Minerva Med. 85, 455–459 (1994).

    PubMed  CAS  Google Scholar 

  22. M. G. Matera, D. De Santis, S. Maione, C. Vacca, A. R. Romano, L. Stella, M. L. Cenicola, D. Donnoli, and E. Marmo, Antihypertensive drugs and urinary excretion of zinc in genetically hypertensive rats, Curr. Ther. Res. 46, 667–680 (1989).

    CAS  Google Scholar 

  23. A. Golik, D. Modai, J. Weissgarten, Z. Averbukh, and M. Cohn, Hydrochlorothiazideamiloride causes excessive urinary zinc excretion, Clin. Pharmacol. Ther. 42, 42–45 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. M. J. du-Preez and C. J. Lockett, Effect of clopamide, a thiazide diuretic, on copper and zinc levels in hypertensive patients, J. Am. Coll. Nutr. 10, 34–37 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. A. Graczyk and K. Radomska, The relationship between chemical form of trace elements and bioaviability from alimentary tract, in Biological Trace Element and Toxic Metals in Human Environment, Warszawa (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tubek, S. Increased absorption of zinc from alimentary tract in primary arterial hypertension. Biol Trace Elem Res 83, 31–38 (2001). https://doi.org/10.1385/BTER:83:1:31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:83:1:31

Index Entries

Navigation