Skip to main content
Log in

Selenite or selenomethionine interaction with methylmercury on uptake and toxicity showing a weak selenite protection

Studies on cultured K-562 cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium and methylmercuric chloride (MMC) interactions regarding cellular uptake and selenium protection on MMC toxicity have been studied. Human K-562 cells were pretreated or simultaneously treated with either selenite (5 or 50 µM) or selenomethionine (10 or 50 µM) together with (3.5 or 5 µM) MMC. Cells simultaneously treated with selenite or selenomethionine and 3.5 µM MMC showed a decreased mercury concentration with increased selenium dose especially seen in the selenite combinations. The simultaneous selenite and MMC 3.5 µM combinations showed growth curves with an increasing number of viable cells with increased selenite dose. All combinations with 5 µM MMC were toxic to the cells. Interactions between selenite or selenomethionine and MMC regarding cellular uptake of mercury and selenium were observed and indications of selenite protection against MMC toxicity in human K-562 cells were noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Ganther, C. Goudie, M. L. Sunde, M.J. Kopecky, and P. Wagner, Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna, Science 175(26), 1122–1124 (1972)

    Article  PubMed  CAS  Google Scholar 

  2. H. Iwata, H. Okamoto, and Y. Ohsawa, Effect of selenium on methylmercury poisoning, Res. Commun. Chem. Pathol. Pharmacol. 5(3), 673–680 (1973).

    PubMed  CAS  Google Scholar 

  3. L. W. Chang, Protective effects of selenium against methylmercury neurotoxicity: a morphological and biochemical study, Exp. Pathol. 23(3), 143–156 (1983).

    PubMed  CAS  Google Scholar 

  4. S. Potter and G. Matrone, Effect of selenite on the toxicity of dietary methyl mercury and mercuric chloride in the rat, J. Nutr. 104(5), 638–647 (1974).

    PubMed  CAS  Google Scholar 

  5. J. L. Sell and F. G. Horani, Influence of selenium on toxicity and metabolism of methylmercury in chicks and quail, Nutr. Rep. Int. 14(4), 439–447 (1976).

    CAS  Google Scholar 

  6. S. Skerfving, Interaction between selenium and methylmercury, Environ. Health Perspect. 25, 57–65 (1978).

    Article  PubMed  CAS  Google Scholar 

  7. A. Naganuma and N. Imura, Bis(methylmercuric) selenide as a reaction product from methylmercury and selenite in rabbit blood, Res. Commun. Chem. Pathol. Pharmacol. 27(1), 163–173 (1980).

    PubMed  CAS  Google Scholar 

  8. A. Naganuma, Y. Kojima, and N. Imura, Interaction of methylmercury and selenium in mouse: formation and decomposition of bis(methylmercuric) selenide, Res. Commun. Chem. Pathol. Pharmacol. 30(2), 301–316 (1980).

    PubMed  CAS  Google Scholar 

  9. T. Masukawa, H. Kito, M. Hayashi, and H. Iwata, Formation and possible role of bis(methylmercuric) selenide in rats treated with methylmercury and selenite, Biochem. Pharmacol. 31(1), 75–78 (1982).

    Article  PubMed  CAS  Google Scholar 

  10. B. R. Stillings, H. Lagally, P. Bauersfeld, and J. Soares, Effect of cystine, selenium, and fish protein on the toxicity and metabolism of methylmercury in rats, Toxicol. Appl. Pharmacol., 30,243–254 (1974).

    Article  CAS  Google Scholar 

  11. H. E. Ganther, Modification of methylmercury toxicity and metabolism by selenium and vitamin E: possible mechanisms, Environ. Health Perspect. 25, 71–76 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. L. W. Chang and R. Suber, Protective effect of selenium on methylmercury toxicity: a possible mechanism, Bull. Environ. Contam. Toxicol. 29(3), 285–289 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. K. Sumino, R. Yamamoto, and S. Kitamura, A role of selenium against methylmercury toxicity, Nature 268(5615), 73–74 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. E. Komsta-Szumska, K. R. Reuhl, and D. R. Miller, Effect of selenium on distribution, demethylation, and excretion of methylmercury by the guinea pig, J. Toxicol. Environ. Health 12(4–6), 775–785 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. P. Frisk, A. Yaqob, K. Nilsson, J. Carlsson, and U. Lindh, Differences in the growth inhibition of cultured K-562 cells by selenium, mercury or cadmium in two tissue culture media (RPMI-1640, Ham’s F-10)., Biometals 13(2), 101–111 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. U. Heintze, S. Edwardsson, T. Derand, and D. Birkhed, Methylation of mercury from dental amalgam and mercuric chloride by oral streptococci in vitro. Scand J Dent Res 91(2), 150–152 (1983).

    PubMed  CAS  Google Scholar 

  17. J. T. Trevors, Mercury methylation by bacteria, J. Basic Microbiol. 26(8), 499–504 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. L. Liang and R. J. Brooks, Mercury reactions in the human mouth with dental amalgams, Water, Air and Soil Pollution 80, 103–107 (1995).

    Article  CAS  Google Scholar 

  19. C. B. Lozzio and B. B. Lozzio, Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome, Blood 45(3), 321–334 (1975).

    PubMed  CAS  Google Scholar 

  20. L. C. Andersson, K. Nilsson, and C. G. Gahmberg, K562—a human erythroleukemic cell line, Int. J. Cancer 23(2), 143–147 (1979).

    Article  PubMed  CAS  Google Scholar 

  21. J. R. Tennant, Evaluation of the trypan blue technique for determination of cell viability, Transplantation 2(6), 685–694 (1964).

    Article  PubMed  CAS  Google Scholar 

  22. R. Houk, Elemental and isotopic analysis by inductively coupled plasma mass spectrometry, Acc. Chem. Res. 27, 333–339 (1994).

    Article  CAS  Google Scholar 

  23. Y. Yamane, H. Fukino, Y. Aida, and M. Imagawa, Studies on the mechanism of protective effects of selenium against the toxicity of methylmercury, Chem. Pharm. Bull. (Tokyo) 25(11), 2831–2837 (1977).

    CAS  Google Scholar 

  24. P. Frisk, A. Yaqob, K. Nilsson, J. Carlsson and U. Lindh, Uptake and retention of selenite and selenomethionine in cultured K-562 cells, Biometals, 13(3), 204–215 (2000).

    Article  Google Scholar 

  25. P. R. Sager, Selectivity of methyl mercury effects on cytoskeleton and mitotic progression in cultured cells, Toxicol Appl Pharmacol. 94(3), 473–486 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. R.M. Zucker, K.H. Elstein, R.E. Easterling, and E.J. Massaro. Flow cytometric analysis of the mechanism of methylmercury cytotoxicity, Am. J. Pathol. 137(5), 1187–1198 (1990).

    PubMed  CAS  Google Scholar 

  27. A. Naganuma, K. Miura, T. Tanaka-Kagawa, J. Kitahara, Y. Seko, H. Toyoda, and N. Imura, Overexpression of manganese-superoxide dismutase prevents methylmercury toxicity in HeLa cells, Life Sci. 62(12), 157–161 (1998).

    Article  Google Scholar 

  28. B. J. Shenker, T. L. Guo, I. O. Guo, and I. M. Shapiro, Induction of apoptosis in human T-cells by methyl mercury: temporal relationship between mitochondrial dysfunction and loss of reductive reserve, Toxicol. Appl. Pharmacol. 157(1), 23–35 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. L. Yan, J. A. Yee, L. M. Boylan, and J. E. Spallholz, Effect of selenium compounds and thiols on human mammary tumor cells, Biol. Trace Element Res. 30(2), 145–162 (1991).

    Article  CAS  Google Scholar 

  30. M. S. Stewart, J. E. Spallholz, K. H. Neldner, and B. C. Pence, Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis, Free Radical Biol. Med. 26(1–2), 42–48 (1999).

    Article  CAS  Google Scholar 

  31. J. Alexander, A. Hostmark, O. Forre, and M. Bryn, The influence of selenium on methyl mercury toxicity in rat hepatoma cells, human embryonic fibroblasts and human lymphocytes in culture, Acta Pharmacol. Toxicol. (Copenh.) 45(5), 379–386 (1979).

    CAS  Google Scholar 

  32. P. D. Whanger, Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis, J. Trace Elements Electrolytes Health Dis. 6(4), 209–221 (1992).

    CAS  Google Scholar 

  33. J. Alexander and T. Norseth The effect of selenium on the biliary excretion and organ distribution of mercury in the rat after exposure to methyl mercuric chloride, Acta Pharmacol. Toxicol. 44(3), 168–176 (1979).

    Article  CAS  Google Scholar 

  34. S. J. Kleinschuster, M. Yoneyama, and R. P. Sharma, A cell aggregation model for the protective effect of selenium and vitamin E on methylmercury toxicity, Toxicology 26(1), 1–9 (1983).

    Article  PubMed  CAS  Google Scholar 

  35. P. Frisk, A. Yaqob, K. Nilsson, J. Carlsson, and U. Lindh, Influence of selenium on mercuric chloride cellular uptake and toxicity indicating protection. Studies on cultured K-562 cells, Biol. Trace Elem. Res., to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisk, P., Yaqob, A., Nilsson, K. et al. Selenite or selenomethionine interaction with methylmercury on uptake and toxicity showing a weak selenite protection. Biol Trace Elem Res 80, 251–268 (2001). https://doi.org/10.1385/BTER:80:3:251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:80:3:251

Index Entries

Navigation