Skip to main content
Log in

Serum magnesium, copper, and zinc alterations following spinal fusion

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Changes in serum magnesium, copper and zinc values were evaluated in spinal fusion patients at four monitorings. For magnesium and copper individually, a significant difference was found between the mean values at each monitoring (p<0.05), whereas the changes of zinc values between four monitorings were insignificant. There was no statistical difference between the changes of each trace element values and gender, age, operative time, intraoperative blood loss, blood replacement, number of the vertebral levels fused, and antibiotic type used.

As a result, magnesium can be suggested to be more important than the other two elements in the postoperative period. Alterations of serum magnesium, copper, and zinc values do not have any correlation with the fusion of the spinal column, either with the width of the fused area or operative time and blood loss. This study cannot confirm the exact reason for this entity and the etiology remains speculative. There is no need for magnesium, copper, or zinc supplementation during the surgical period for the patients. It will be worthy to evaluate the patients who were sent to the intensive care unit after spinal surgery and compare their results with the other intensive care patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Al-Bader, J. T. Christienson, F. Simonet, H. Abul, H. Dashti, and M. Schmuziger, Inflammatory response and oligo-element alterations following cardiopulmonary bypass in patients undergoing coronary artery bypass grafting, Cardiovasc. Surg. 6(4), 406–414 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. M. M. Berger, Role of trace elements and vitamins in peri-operative nutrition, Ann. Fr. Anesth. Reanim. 14(Suppl), 82–94 (1995).

    PubMed  Google Scholar 

  3. D. B. Milne, Trace elements, in Tietz Textbook of Clinical Chemistry, 3rd ed., C. A. Burtis, E. R. Ashwood, ed., WB Saunders, Philadelphia, pp. 1029–1055 (1999).

    Google Scholar 

  4. B. Chernow, S. Bamberger, M. Stoiko, M. Vadnais, S. Mills, V. Hoellerich, et al., Hypomagnesemia in patients in postoperative intensive care unit, Chest 95(2), 391–397 (1989).

    PubMed  CAS  Google Scholar 

  5. D. Juan, Clinical review: the clinical importance of hypomagnesemia, Surgery 91(5), 510–517 (1982).

    PubMed  CAS  Google Scholar 

  6. G. Lum, Hypomagnesemia in acute and chronic care patient populations, Clin. Chem. 97(6), 827–830 (1992).

    CAS  Google Scholar 

  7. R. Whang, Magnesium deficiency: pathogenesis, prevalance and clinical implications, Am. J. Med. 82(Suppl 3A), 24–29 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. H. M. Place, R. J. Enzenauer, B. J. Muff, P. J. Ziporin, and C. W. Brown, Hypomagnesemia in postoperative spine fusion patients, Spine 21(19), 2268–2272 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. E. T. Wong, R. K. Rude, F. R. Singer, and S. T. Shaw, A high prevalence of hypomagnesemia and hypermagnesemia in hospitalized patients, Am. J. Clin. Pathol. 79(3), 348–352 (1983).

    PubMed  CAS  Google Scholar 

  10. C. Çoker, B. Ersöz, S. Habif, N. Çetiner, and Y. Gültekin, Elemental analysis of serum inductively coupled plasma atomic emission spectroscopy in comparison to atomic absorbtion spectroscopy, Turk. J. Med. Sci. 26, 553–557 (1996).

    Google Scholar 

  11. E. M. Gindler and A. H. Dwayne, Colorimetric determination with bound “calmagite” of magnesium in human serum, Clin. Chem. 17, 662 (1971).

    Google Scholar 

  12. B. Dawson-Saunders and G. R. Trapp, Comparing three or more means, in Basic and Clinical Biostatistics, B. Dawson-Saunders and G. R. Trapp, eds., Prentice-Hall International, London, p. 139 (1994).

    Google Scholar 

  13. S. A. Glantz, Experiments when each subject receives more than one treatment, in Primer of Biostatistics, S. A. Glantz, ed., McGraw-Hill, New York, pp. 299–311 (1992).

    Google Scholar 

  14. J. Honegger, M. Buchfelder, H. Rupprecht, and W. Schwarz, Effect of neurosurgical interventions on serum levels of the essential trace elements zinc and copper—a peri-operative study, Z. Exp. Chir. Transplant. Kuntliche Organe 23(4), 236–240 (1990).

    CAS  Google Scholar 

  15. R. B. Sawyer, M. A. Drew, M. H. Gesink, and K. C. Sawyer, Postoperative magnesium metabolism, Arch. Surg. 100, 343–348 (1970).

    PubMed  CAS  Google Scholar 

  16. M. R. England, G. Gordon, M. Salem, and B. Chernow, Magnesium administration and dysrhytmias after cardiac surgery, JAMA 268(17), 2395–2402 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. D. B. Milne, Assessment of copper nutritional status, Clin. Chem. 40(8), 1479–1484 (1994).

    PubMed  CAS  Google Scholar 

  18. F. Y. Leung, Trace elements in parenteral micronutrition, Clin. Biochem. 28(6), 561–566 (1996).

    Article  Google Scholar 

  19. A. Okada, Y. Takagi, R. Nezu, and S. Lee, Zinc in clinical surgery—a research review, Jpn. J. Surg. 20(6), 635–644 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatari, H., İşlekel, H., Altekin, E. et al. Serum magnesium, copper, and zinc alterations following spinal fusion. Biol Trace Elem Res 80, 33–42 (2001). https://doi.org/10.1385/BTER:80:1:33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:80:1:33

Index Entries

Navigation