Skip to main content
Log in

Isolation and characterization of rare earth element-binding protein in roots of maize

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Rare earth element-binding protein was isolated from maize, which was grown under greenhouse conditions and characterized in terms of molecular weight, amino acid composition, and ultraviolet absorption. The molecular weight of the maize protein was determined to be 183,000, with two distinct subunits of approximately molecular weights of 22,000 and 69,000, respectively. The protein is particularly rich in asparagine/aspartic acid, glutamine/glutamic acid, glycine, alanine, and leucine and contains 8.0% of covalently bound carbohydrate. The ultraviolet absorption of the protein is low at 280 nm and no change in the adsorption was observed with a change in pH. Compared to the unique features of the metallothioneins with a molecular weight of approximately 10,000, a high cysteine content of 30%, high absorption at 254 nm and a low absorption at 280 nm, and absorption change with pH, the REE-binding protein is unlikely to be plant metallothionein in nature. It was found that an almost twofold greater concentration was found for most of the REEs in the protein isolated from the maize with REE fertilizer use than that without REE fertilizer. This study suggests that the REE-binding protein is a glycoprotein and REEs can be firmly bound with the protein of maize roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Henderson, General geochemical properties and abundance of the rare earth elements, in Rare Earth Element Geochemistry, P. Henderson, ed., Elsevier, Amsterdam (1984).

    Google Scholar 

  2. A. A. Volokh, A. V. Gorbunov, S. F. Gundorina, and B. A. Revich, Phosphorus fertilizer production as a sourch of rare earth elements pollution of the environment, Sci. Total Environ. 95, 141–148 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. W. Bremmer, Rare earth application in Chinese agriculture, Elements Rare Earth Spec. Metals Appl. Technol. 5, 20–24 (1994).

    Google Scholar 

  4. Q. Tu, X. R. Wang, L. Q. Tian, and L. M. Dai, Bioaccumulation of the rare earth elements lanthanum, gadolinium and yttrium in carp (Cyprinus carpio), Environ. Pollut. 3, 345–350 (1994).

    Google Scholar 

  5. B. S. Guo, Rare Earths in Agriculture, China Agricultural Science and Technology Press, Beijing (1988) (in Chinese).

    Google Scholar 

  6. C. H. Evans, Biochemistry of Lanthanides, Plenum, New York (1990).

    Google Scholar 

  7. E. Sabbioni, R. Pietra, P. Gaglione, G. Vocaturo, F. Colombo, M. Zanoni, et al., Long-term occupational risk of rare earth pneumoconiosis, Sci. Total Environ. 26, 19–32 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. N. I. Sax, Dangerous Properties of Industrial Materials, Van Nostrand Reinhold, New York (1984).

    Google Scholar 

  9. G. S. Ding and H. C. Ma, Effects of rare earths on organisms, J. Environ. Sci. 5, 70–75 (1984) (in Chinese).

    CAS  Google Scholar 

  10. S. Hirano and K. Suzuki, Exposure, metabolism, and toxicity of rare earths and related compounds, Environ. Health Perspect. 104(Suppl. 1), 85–95 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. M. Bartolf, E. Brennan, and C. A. Price, Partial characterization of a cadmium-binding protein from the roots of cadmium-treated tomato, Plant Physiol. 66, 438–441 (1980).

    PubMed  CAS  Google Scholar 

  12. A. Tukencorf and T. Baszynske, Partial purification and characterization of copper-binding protein from rots of Avena sative grown excess copper, J. Plant Physiol. 120, 57–63 (1985).

    Google Scholar 

  13. N. H. Robinson and P. J. Jackson, “Metallothioneinlike” metal complexes in angiosperms; their structure and function, Physiol. Plant 67, 499–506 (1986).

    Article  CAS  Google Scholar 

  14. M. Kaneta, H. Hikichi, S. Endo and N. Sugiyama, Chemical form of cadmium (and other heavey metals) in rice and wheat plants, Environ. Health Perspect. 65, 33–37 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. G. Nagahashi, W. W. Thomson, and R. T. Leonard, The Casparian strip as a barrier to the movement of lanthanum in corn roots, Science 183, 670–671 (1974).

    Article  CAS  PubMed  Google Scholar 

  16. C. Kelley, R. E. Mielke, D. Dimaquibo, A. J. Curtis, and J. G. Dewitt, Adsorption of Eu(III) onto roots of water hyacinth, Environ. Sci. Technol. 33, 1439–1443 (1999).

    Article  CAS  Google Scholar 

  17. A. C. Texier, Y. Andres, M. Illemassene, and P. L. Cloirec, Characterization of lanthanide ions binding sites in the cell wall of Pseudomonas aeruginosa, Environ. Sci. Technol. 34, 610–615 (2000).

    Article  CAS  Google Scholar 

  18. C. K. Jayawickreme and A. Chatt, Characterization of protein-bound metal species by bioanalytical and neutron activation techniques, J. Radioanal. Nucl. Chem. 124, 257–279 (1988).

    Article  CAS  Google Scholar 

  19. W. E. Rauser and G. John, Cadmium-binding protein in root of maize, Can. J. Bot. 62, 1645–1650 (1984).

    Article  CAS  Google Scholar 

  20. R. S. Russell and J. Sanderson, Nutrient uptake by different parts of the intact roots of plants, J. Exp. Bot. 18, 491–508 (1967).

    Article  Google Scholar 

  21. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. U. K. Laemruli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685 (1970).

    Article  Google Scholar 

  23. M. Dubois, K. A. Gilles, P. A. Hamilton, P. A. Rebers, and F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28, 350–356 (1956).

    Article  CAS  Google Scholar 

  24. H. Y. Nakatani, J. Barber, and J. A. Forrester, Surface charges on chloroplast membranes as studied by particle electrophoresis, Biochim. Biophys. Acta 504, 215–225 (1978).

    Article  PubMed  CAS  Google Scholar 

  25. H. Y. Nakatani and J. Barber, Further studies of the thylakoid membrane surface charges by particle electrophoresis, Biochim. Biophys. Acta 591, 82–91 (1980).

    Article  PubMed  CAS  Google Scholar 

  26. P. Pulido, J. H. R. Kagi, and B. L. Vallee, Isolation and some properties of human metallothionein, Biochemistry 5, 1768–1777 (1966).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Da., Shan, Xq., Wen, B. et al. Isolation and characterization of rare earth element-binding protein in roots of maize. Biol Trace Elem Res 79, 185–194 (2001). https://doi.org/10.1385/BTER:79:2:185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:79:2:185

Index Entries

Navigation