Skip to main content
Log in

Iodine speciation in human serum by reversed-phase liquid chromatography-ICP-mass spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Reversed-phase liquid chromatography-inductively coupled plasma mass spectrometric hyphenation was used for iodine speciation in human serum. First investigations showed that iodine species nearly quantitatively were eluted in the void volume. The result indicated that protein-linked thryoid hormones were not interacting with the stationary phase, thus being not retained. Investigations were performed about T4-TBG (thyroxin-thyroxin-binding globulin) complex generation and its retention during chromatography. It was shown that T4-TBG was not retained on the column. Therefore, a protease treatment was introduced for serum sample preparation. The analysis of “normal” sera (after protease) gave reasonable results lying in the range published in literature: I-:11; di-iodothyrosine (DIT): 2.1; mono-iodothyrosine (MIT): 1.6; reversed tri-iodothyronine (rT3): 3.9; T3: 5.9; T4: 60; each micrograms iodine per liter. The method also proved to recognize abnormalities in a pathologic serum, having rT3 as the predominant species. In this case the method obviously was superior compared to standard immunoassay methods, as it is monitoring the iodine in the species (physiologically active iodine species), whereas immunoassay methods may sometimes detect deiodinated (inactive) compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Underwood, Trace Elements in Human and Animal Nutrition, 4th ed., Academic, New York (1977).

    Google Scholar 

  2. A. S. Prasad, Trace Elements and Iron in Human Metabolism, Plenum, New York (1978).

    Google Scholar 

  3. W. Buchberger, J. Chromatogr. 439, 129–135 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. H. Keller, Klinische-chemische Labordiagnostik für die Praxis. Analyse, Befund, Interpretation, Georg Thieme Verlag, Stuttgart (1991).

    Google Scholar 

  5. W. Reinhardt, M. Luster, K.H. Rudorff, C. Heckmann, S. Petrasch, S. Lederbogen, et al., Eur. J. Endocrin. 139, 23–28 (1998).

    Article  CAS  Google Scholar 

  6. L. M. Robison, P. W. Sylvester, P. Birkenfeld, J. P. Lang, and R. J. Bull, Toxicol. Environ Health Part A, 55, 93–106 (1998).

    Article  CAS  Google Scholar 

  7. G. Knapp, B. Maichin, P. Fecher, S. Hasse, and P. Schramel, Fresenius J. Anal. Chem. 362, 508–513 (1998).

    Article  CAS  Google Scholar 

  8. K. Müller, Clin. Chim. Acta 19, 21–29 (1967).

    Article  Google Scholar 

  9. G. Geyrtyanfy, J. Földes, and E. Kollin, Z. Klin. Chem. Klin. Biochem. 9/3, 117–122 (1971).

    Google Scholar 

  10. E. Makowetz, K. Müller, and H. Spitzy, Mikrochem. J. 10, 194–201 (1966).

    Article  CAS  Google Scholar 

  11. W. Buchberger and U. Huebauer, Mikrochim. Akta 111, 137–142 (1989).

    Article  Google Scholar 

  12. B. Michalke and P. Schramel, Electrophoresis 20, 2547–2553 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. K. Takatera and T. Watanabe, Anal. Chem. 65, 759–762 (1993).

    Article  CAS  Google Scholar 

  14. B. Michalke, P. Schramel, and H. Witte, Biol. Trace Element Res. 78, 67–79 (2001).

    Article  Google Scholar 

  15. J. Falbe and M. Regitz (eds.), Römpp Chemie Lexikon, 9. Auflage, Georg Thieme Verlag, Stuttgart (1995).

    Google Scholar 

  16. The Merck Index, 10th ed., Merck, Rathway, NJ (1983).

  17. B. Michalke, P. Schramel, and S. Hasse, Mikrochim. Akta 122, 67–76 (1996).

    Article  CAS  Google Scholar 

  18. N. Gilon, M. Potin-Gautier, and M. Astruc, J. Chromatogr. A 750, 327–334 (1996).

    Article  CAS  Google Scholar 

  19. P. Schramel and S. Hasse, Mikrochim. Akta 116, 205–209 (1994).

    Article  CAS  Google Scholar 

  20. A. M. Saboori, N. R. Rose, H. S. Bresler, M. Vladuttalor, and C. L. Burek, Clin. Exp. Immunol. 113(2), 297–302. (1998).

    Article  PubMed  CAS  Google Scholar 

  21. A. M. Saboori, N. R. Rose, and C. L. Burek, Clin. Exp. Immunol. 113(2), 303–308 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalke, B., Schramel, P. & Witte, H. Iodine speciation in human serum by reversed-phase liquid chromatography-ICP-mass spectrometry. Biol Trace Elem Res 78, 81–91 (2000). https://doi.org/10.1385/BTER:78:1-3:81

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:78:1-3:81

Index Entries

Navigation