Skip to main content
Log in

Thyroid hypofunction in Down’s syndrome

Is it related to oxidative stress?

Biological Trace Element Research Aims and scope Submit manuscript

Cite this article

Abstract

Oxidative stress affecting the thyroxin biosynthesis might explain the proneness of patients with Down’s syndrome (DS) (trisomia 21) to develop hypothyroidism. Thyroideal cells are exposed to endogenous H2O2 that acts as a cofactor for the iodination of thyroxin precursors. The gland has high levels of selenium-containing proteins, including peroxide-detoxicating enzyme proteins. The object of the present study was to explore the hypothesis of a role of an imbalance between toxic oxygen production and protective metalloenzymes during the development of thyroid hypofunction in DS patients. We analyzed serum levels of thyroid hormones and trace metals in 38 institutionalized adults with DS, using mentally retarded subjects matched for age, sex, and behavioral function as controls. The DS patients had significantly lower mean values of free thyroxin (fT4) and increased TSH (thyroid stimulating hormone), as compared to the controls. They had lower serum selenium than the controls. A positive correlation was observed between serum concentrations of fT4 and selenium in the DS patients (r=0.393, p<0.05). No significant differences were found between the fT4 or the TSH concentrations in the patients with and without circulating antithyroid autoantibodies. Our results support the suggestion that thyroid hypofunction in patients with Down’s syndrome in some way is linked to the low serum levels of selenium found in these patients. It is suggested that selenium-containing proteins are involved in thyroid hormonal synthesis, by protecting biosynthetic processes against the toxicity of free oxygen radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. C. Murdock, W. A. Ratcliffe, B. G. McLary, J. C. Rodger, and J. G. Ratcliffe, Thyroid function in adults with Down’s syndrome, J. Clin. Endocrinol. Metab. 44, 453–458 (1977).

    Article  Google Scholar 

  2. C. Baxter, R. C. Larkins, F. I. R. Martin, P. Heyma, K. Myles, and L. Ryan, Down’s syndrome and thyroid function in adults, Lancet 1975(II), 794 (1975).

    Article  Google Scholar 

  3. C. E. Benda, The Child with Mongolism, Grune and Stratton, London, p. 110 (1960).

    Google Scholar 

  4. S. Korsager, Autoimmunitet ved Down’s syndrom, Ugeskr. Læger 143, 1589–1591 (1981).

    PubMed  CAS  Google Scholar 

  5. D. Friedman, W. S. Pond, and D. R. O’Brian, Thyroid dysfunction in individuals with Down’s syndrome, Arch. Intern. Med. 149, 1990–1993 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. J. Nève, L. Molle, M. Hanocq, P. M. Sinet, and R. VanGeffel, Erythrocyte and plasma trace element levels in clinical assessments. Biol. Trace Element Res. 5, 75–79 (1983).

    Article  Google Scholar 

  7. R. Lefhem and M. Orrell, Antioxidants and dementia, Lancet 349, 1189 (1997).

    Article  Google Scholar 

  8. J. Aaseth, H. Frey, E. Glattre, G. Norheim, J. Ringstad, and Y. Thomassen, Selenium concentrations in the human thyroid gland. Biol. Trace Element Res. 24, 147–152 (1989).

    Google Scholar 

  9. D. Behne, C. Weiss-Nowak, M. Kalchlsch, C. Westphal, H. Gessner, and A. Kyriakopoulos, Studies on the distribution and characteristics of new mammalian selenium-containing proteins, Analyst 120, 823–825 (1995).

    Article  CAS  Google Scholar 

  10. P. Goyens, J. Golstein, B. Nsombola, H. Vis, and J. E. Dumont, Selenium deficiency as a possible factor in the pathogenesis of myxoedematous endemic cretinism. Acta Endocrinol. (Copenh.) 114, 503–508 (1987).

    Google Scholar 

  11. J. Aaseth, J. Alexander, Y. Thomassen, J. P. Blomhoff, and S. Skrede, Serum selenium levels in liver diseases, Clin. Biochem. 15, 281–283 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. A. Aakvaag, T. Sand, P. K. Opstad, and F. Fonnum, Hormonal changes in serum in young men during prolonged physical strain, Eur. J. Appl. Physiol. 39, 283–291 (1978).

    Article  CAS  Google Scholar 

  13. G. W. Snedecor and W. G. Cochran, Statistical Methods, 6th ed. Iowa State University Press, Ames, p. 175 (1974).

    Google Scholar 

  14. J. Neve, P. M. Sinet, L. Molle, and A. Nicole, Selenium, zinc and copper in Down’s syndrome (trisomy 21): blood levels and relation with glutathione peroxidase and superoxide dismutase, Clin. Chim. Acta 133, 209–214 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. B. Bjørksten, K. Back, H. Gustavson, B. Hallmans, B. Haggløf, and A. Tarnvik, Zinc and immune function in Down’s syndrome. Acta Pædiatr. Scand. 69, 183–187 (1980).

    PubMed  Google Scholar 

  16. F. Vertongen, P. Cauchie, and D. Gnat, Selenium and glutathione peroxidase in plasma and erythrocytes of Down’s syndrome (trisomy 21) patients, J. Ment. Defic. Res. 28, 261–268 (1984).

    PubMed  Google Scholar 

  17. Ø. J. Kanavin, H. Scott, O. Fausa, J. Ek, P. I. Gaarder, and P. Brandtzaeg, Immunological studies in Down’s syndrome—measurements of autoantibodies and serum antibodies to dietary antigens in relation to zinc levels, Acta Med. Scand. 224, 473–477 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. C. Williams, H. Quinn, E. Wright, P. E. Sylvester, P. H. Gossling, and J. W. T. Dickerson, Xylose absorption in Down’s syndrome, J. Ment. Defic. Res. 27, 173–177 (1985).

    Google Scholar 

  19. J. Kedziora, C. Bartosz, J. Gromadzinska, M. Sklodowska, W. Wesowicz, and J. Scianowski, Lipid peroxides in blood plasma and enzymatic antioxidative defence of erythrocytes in Down’s syndrome, Clin. Chim. Acta 154, 191–194 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. N. Crosti, J. Bajer, A. Serra, A. Rigo, M. Scarpa, and P. Viglino, Coordinate expression of Mn-containing superoxide dismutase in human fibroblasts with trisomy 21, J. Cell. Sci. 79, 95–103 (1985).

    PubMed  CAS  Google Scholar 

  21. G. Anneren, M. Gebre-Mehdin, K. H. Gustavson, and L. O. Plantin, Selenium in plasma and erythocytes in patients with Down’s syndrome and healthy controls. Variation in relation to age, sex and glutathione peroxidase activity in erythrocytes, Acta Pœdiatr. Scand. 74, 508–514 (1985).

    CAS  Google Scholar 

  22. P. M. Sinet, Metabolism of oxygen derivatives in Down’s syndrome, Ann. NY Acad. Sci. 396, 83–84 (1982).

    Article  PubMed  CAS  Google Scholar 

  23. F. Carmignol, P. M. Sinet, and H. Jerome, Selenium dependent and non selenium dependent glutathione peroxidase in human tissue extracts, Biochim. Biophys. Acta 759, 49 (1983).

    Google Scholar 

  24. B. Smith and R. Hall, Effects of radioiodine on thyrotropin binding inhibiting immunoglobulins in Grave’s disease, Clin. Endocrinol. 11, 437–444 (1979).

    Google Scholar 

  25. A. W. C. Kung, K. K. Pun, K. S. L. Lam, P. Choi, C. Wang, and R. T. T. Yeung, Long term results following 131I treatment for Grave’s disease, Q. J. Med. 76, 961–967 (1990).

    PubMed  CAS  Google Scholar 

  26. T. Bjøro, T. Schreiner, J. Holmen, K. Midthjell, Ø. Kruger, and H. Brochmann, Frequency of thyroid diseases and dysfunction in Nord-Trøndelag, a county in Mid-Norway, J. Endocrin. Invest. 22(6)(Suppl.), 118 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanavin, Ø.J., Aaseth, J. & Birketvedt, G.S. Thyroid hypofunction in Down’s syndrome. Biol Trace Elem Res 78, 35–42 (2000). https://doi.org/10.1385/BTER:78:1-3:35

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:78:1-3:35

Index Entries

Navigation