Skip to main content
Log in

Hyperlipidemia and type I 5′-monodeiodinase activity

Regulation by selenium supplementation in rabbits

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Male New Zealand White rabbits were divided into three groups: (I) control, (II) high-fat-diet (HFD) fed, and (III) HFD fed+selenium supplemented. After 3 mo of treatment, there was a significant increase in serum cholesterol and triglycerides in the HFD-fed group as compared to the control. However in the selenium (Se)-supplemented group, the levels of serum cholesterol and triglycerides were significantly less as compared to group II. HFD feeding resulted in decreased serum Se levels, but supplementation of dietary Se along with HFD, as in group III, showed an apparent increase in its levels. The Se-dependent glutathione peroxidase (GSH-Px) activity in the liver and the aorta increased significantly in HFD-fed animals and also showed an additional significant increase on Se supplementation. Both serum T3 and T4 levels showed a significant decrease on HFD feeding. However, supplementation of Se led to a significant increase in the levels of these parameters viz-à-viz HFD-fed animals. HFD feeding significantly decreased the activity of type I iodothyronine 5′-deiodinase (5′-DI) in the liver from group II rats. On supplementation of Se along with HFD, the activity increased in the liver. However, there was no significant change in its activity in the aorta. The 5′-DI activity in the thyroid showed an opposite trend in comparison with peripheral tissues (i.e., liver). The important finding of this study is that in the hyperlipidemic state, deiodinase in the thyroid behaves in a different manner as compared to its activity in extrathyroidal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Brown and J. L. Goldstein, How LDL-receptor influence cholesterol and atherosclerosis, Sci. Am. 251, 52–60 (1984).

    Article  Google Scholar 

  2. H. Esterbaur, G. Wag, and H. Phul, Lipid peroxidation and its role in atherosclerosis, Br. Med. Bull. 49, 566–576 (1993).

    Google Scholar 

  3. B. P. S. Kang, U. Mehta, and M. P. Bansal, Effect of diet induced hypercholesterolemia and selenium supplementation on nitric oxide synthase activity, Arch. Physiol. Biochem. 105, 601–607 (1997).

    Article  Google Scholar 

  4. B. P. S. Kang, M. P. Bansal, and U. Mehta, Selenium supplementation and diet induced hypercholesterolemia in the rat: changes in lipid levels, malonyldialdehyde production and the nitric oxide synthase activity, Gen. Physiol. Biophys. 17, 71–78 (1998).

    PubMed  CAS  Google Scholar 

  5. D. Steinberg, S. Parthasarthy, T. E. Carew, J. L. Witztum, Beyond cholesterol: modification of low density lipoprotein that increases its atherogenicity, N. Engl. J. Med. 320, 915–924 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. A-L. Ran, Thyroid hormones and prevention of atherosclerotic heart disease: an old-new hypothesis, Perspect. Biol. Med. 37, 486–494 (1994).

    Google Scholar 

  7. G. Goss, M. Sykes, R. Arellano, B. Fong, and A. Angel, HDL clearance and receptor mediated catabolism of LDL are reduced in Hypothyroid rats, Atherosclerosis 66, 269–275 (1987).

    Article  Google Scholar 

  8. R. Arem and W. Patch, Lipoprotein and apolipoprotein levels in subclinical hypothyroidism, Arch. Intern. Med. 150, 2097–2100 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. D. Behne, A. Kyriakopoulos, H. Meinhold, and J. Kohrle, Identification of Type I iodothyronine 5′-deiodinase as a selenoenzyme, Biochem. Biophys. Res. Commun. 173, 1143–1149 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. M. J. Berry, L. Banu, and P. R. Larsen, Type-I iodothyronine deiodinase is a selenocysteine containing enzyme, Nature 349, 438–440 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. G. J. Beckett, S. E. Beddows, P. C., Morrice, F. Nicol, and J. R. Arthur, Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats, Biochem. J. 248, 443–447 (1987).

    PubMed  CAS  Google Scholar 

  12. S. Vadhanavikit and H. E. Ganther, Selenium requirements for normal hepatic and thyroidal 5′-deiodinase (Type-I) activities, J. Nutr. 123, 1124–1128 (1993).

    PubMed  CAS  Google Scholar 

  13. L. R. Wojcicki, B. B. Wiszniewska, L. Samochowiec, S. Juzwiak, D. Kadlubowska, S. Tustanowski, and Z. Juzyszyn, Effect of selenium and vitamin E on the development of experimental atherosclerosis in rabbits, Atherosclerosis 87, 9–16 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. G. D. Boccio, D. Lapenna, E. Porreca, A. Pennelli, F. Savini, P. Feliciani, et al., Aortic antioxidant defense mechanisms: time related changes in cholesterol fed rabbits, Atherosclerosis 81, 127–135 (1990).

    Article  PubMed  Google Scholar 

  15. S. V. Mantha, M. S. Prasad, J. Kalra, and K. Prasad, Antioxidant enzymes in hypercholesterolemia and effects of vitamin E in rabbits, Atherosclerosis 101, 135–144 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. N. Chiamori and R. J. Henry, Study of the ferric chloride method for determination of total cholesterol and cholesterol esters, Am. J. Clin. Pathol. 31, 305–309 (1959).

    PubMed  CAS  Google Scholar 

  17. R. Hasunuma, T. Ogavi, and Y. Kawaniska, Fluorimetric determination of selenium in nanogram amounts in biological materials using 2,3-diaminonaphthalene, Anal. Biochem. 126, 242–245 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–168 (1967).

    PubMed  CAS  Google Scholar 

  19. M. Lees and S. Paxman, Modification of Lowry procedure for analysis of proteolipid proteins, Anal. Biochem. 47, 184–194 (1972).

    Article  PubMed  CAS  Google Scholar 

  20. J. T. Salonen, R. Salonen, K. Seppanen, M. Kantola, S. Suntioinen, and H. Korpela, Interaction of serum copper, selenium and low density lipoprotein cholesterol in atherogenesis, Br. Med. J. 302, 756–760 (1991).

    Article  CAS  Google Scholar 

  21. G. Subramanayam, J. Vijaya, S. A. A. Latheef, V. Jayaram, G. P. Anne, V. Sukhaveni, et al., Effect of selenium on lipid profile in experimental rabbits, Trace Element Electrolytes 15, 87–89 (1998).

    Google Scholar 

  22. J. R. Arthur, F. Nicol, and G. J. Beckett, Hepatic iodothyronine 5′ deiodinase. The role of selenium, Biochem. J. 272, 537–540 (1990).

    PubMed  CAS  Google Scholar 

  23. J. Kohrle, Thyroid hormone deiodination in target tissues—a regulatory role for the trace element selenium, Exp. Clin. Endocrinol. 102, 63–89 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. P. R. Larsen and M. J. Berry, Nutritional and hormonal regulation of thyroid hormones deiodinases, Annu. Rev. Nutr. 15, 323–352 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B.P.S., Bansal, M.P. & Mehta, U. Hyperlipidemia and type I 5′-monodeiodinase activity. Biol Trace Elem Res 77, 231–239 (2000). https://doi.org/10.1385/BTER:77:3:231

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:77:3:231

Index Entries

Navigation