Skip to main content
Log in

Determination of trace elements in some natural drugs by atomic absorption spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fifteen kinds of common plants, animals, and minerals used as traditional medicines by the Chinese people have been subjected to analysis by atomic absorption spectrometry for its content of seven metals: lead, cadmium, arsenic, mercury, copper, cobalt, and manganese. The concentrations of these elements are significantly different according to their vegetal, animal, or mineral origin. The average values found for lead, cadmium, arsenic, cobalt, and manganese in drugs of mineral origin are higher than those derived from plants and animals, except for copper, which was higher in drugs of animal origin.

Our results suggest that the user of traditional Chinese crude drugs should be warned of the potential danger of heavy-metal poisoning because their concentrations seem to be higher than the maximum values allowed by health agencies in several countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. J. Xu and P. B. Paul, Recent advances of pharmacognosy in China, Abstr. Chin. Med. 1, 93–112 (1986).

    Google Scholar 

  2. D. Zhu, Recent advances on the active compounds in Chinese medicine, Abstr. Chin. Med. 1, 251–286 (1987).

    Google Scholar 

  3. K. J. Chen and W. P. Zhang, Advances an antiageing herbal medicines in China, Abstr. Chin. Med. 1, 309–330 (1987).

    Google Scholar 

  4. D. L. Samudralwar and A. N. Garg, Minor and trace elemental determination in the Indian herbal and other medicinal preparations, Biol. Trace Element Res. 54, 113–121 (1996).

    CAS  Google Scholar 

  5. M. K. Wong, P. Tan, and Y. C. Wee, Heavy metals in some Chinese herbal plants, Biol. Trace Element Res. 36, 135–142 (1993).

    CAS  Google Scholar 

  6. K. S. Chen, C. L. Tseng, and T. H. Lin, Trace elements in natural drugs determined by INAA, J. Radioanal. Nucl. Chem. 170, 265–280 (1993).

    Article  CAS  Google Scholar 

  7. R. J. Ko, Adulterants in Asia patent medicines, N. Engl. J. Med. 339, 847 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. W. F. Huang, K. C. Wen, and M. L. Hsiao, Adulteration by synthetic therapeutic substances of traditional Chinese medicines in Taiwan, J. Clin. Pharmacol. 37, 344–350 (1997).

    PubMed  CAS  Google Scholar 

  9. E. O. Espinoza, M. J. Mann, and B. Bleasdell, Arsenic and mercury in traditional Chinese herbal balls. N. Engl. J. Med. 333, 803–804 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. E. Gertner, P. S. Marshall, D. Filandrinos, A. S. Potek, and T. M. Smith, Complications resulting from the use of Chinese herbal medications containing undeclared prescription drugs. Arthritis Rheum. 38, 614–617 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Y. W. Chi, S. L. Chen, M. H. Yang, R. C. Hwang, and M. L. Chu, Heavy metals in traditional Chinese medicine: ba-pao-neu-hwang-san, Acta Paediatr. Sin. 34, 181–190 (1993).

    PubMed  CAS  Google Scholar 

  12. I. J. Huang, Lead poisoning in two families, J. Formos. Med. Assoc. 79, 740–748 (1980).

    Google Scholar 

  13. T. J. Cheng, R. H. Wong, Y. P. Lin, Y. H. Hwang, J. J. Horng, and J. D. Wang, Chinese herbal medicine, sibship, and blood lead in children, Occup. Environ. Med. 55, 573–576 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. R. A. Goyer, C. D. Klaassen, and M. P. Waalkes, Metal Toxicity, Academic, San Diego, CA (1995).

    Google Scholar 

  15. J. Y. Yang, M. H. Yang, and T. H. Lin, Effect of wet decomposition methods on the determination of cobalt, copper, selenium and zinc in biological samples using electrophoresis, Anal. Chem. 62, 146–150 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. J. Y. Yang, M. H. Yang, and T. H. Lin, Study of the effect of decomposition methods on the accurate determination of zinc in biological samples by electrophoresis, Anal. Chem. 57, 472–474 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. W. S. Kan, Pharmaceutical Botany, National Research Institute of Chinese Medicine, Taiwan (1981).

    Google Scholar 

  18. Herbs of China, Chi Yea Book Store, Taiwan (1974).

  19. F. H. Nielsen, Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. FASEB J. 5, 2661 (1991).

    PubMed  CAS  Google Scholar 

  20. K. A. Graeme and C. V. Pollack, Jr., Heavy metal toxicity, Part I: arsenic and mercury, J. Emerg. Med. 16, 45–56 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. M. Fields, I. Bureau, and C. G. Lewis, Ferritin is not an indicator of available hepatic iron stores in anemia of copper deficiency in rats, Clin. Chem. 43, 1457–1459 (1997).

    PubMed  CAS  Google Scholar 

  22. P. Vellema, L. Moll, H. W. Barkema, and Y. H. Schukken, Effect of cobalt supplementation on serum vitamin B12 levels, weight gain and survival rate in lambs grazing cobalt-deficient pastures, Vet. Quart. 19, 1–5 (1997).

    CAS  Google Scholar 

  23. J. M. Fell, A. P. Reynolds, N. Meadows, K. Khan, S. G. Long, G. Quaghebeur, et al., Manganese toxicity in children receiving long-term parenteral nutrition, Lancet 347, 1218–1221 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, IC., Chen, KS., Huang, YL. et al. Determination of trace elements in some natural drugs by atomic absorption spectrometry. Biol Trace Elem Res 76, 235–244 (2000). https://doi.org/10.1385/BTER:76:3:235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:76:3:235

Index Entries

Navigation