Skip to main content
Log in

Trace element changes in the myocardium during coxsackievirus B3 myocarditis in the mouse

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

During most infections plasma, concentrations of trace elements change, but it is unclear if this reflects changes in infected target tissues. In coxsackievirus B3 (CB3) infection, the myocardium is a target in both humans and mice. The concentrations of 12 trace elements were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) in the myocardium of sham-inoculated controls and infected A/J mice 4 and 7 d postinoculation. The size of the inflammatory lesion was positively correlated to the virus content of the heart, as estimated by histopathology and in situ hybridization, respectively. Iron, cobalt, vanadium, and selenium showed transient changes, whereas for the other elements, tendencies on d 4 were manifest on d 7. A threefold increase in calcium on d 7 suggests prestages of calcification, whereas increases in zinc, selenium, and copper may be the result of the accumulation of immune cells. The magnesium decrease may contribute to the increased sensitivity to cardiac arrhythmias in myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Beisel, R. S. Pekarek, and R. W. Wannemacher, Jr., The impact of infectious diseases on trace element metabolism in the host, in Trace Element Metabolism in Animals, G. Hoekstra, H. E. Gauther, and W. Mertz, eds., University Park Press, Baltimore, pp. 217–240 (1974).

    Google Scholar 

  2. W. R. Beisel, Metabolic response of the host to infections, in Textbook of Pediatric Infectious Disease, 2nd ed., R. D. Feigin and J. D. Cherry, eds., W. B. Saunders, Philadelphia, pp. 54–69 (1998).

    Google Scholar 

  3. G. Friman and N.-G. Ilbäck, Acute infection: metabolic responses, effects on performance, interaction with exercise, and myocarditis, Int. J. Sports Med. 19, S1-S11 (1998).

    Article  Google Scholar 

  4. F. O. Brady, Induction of metallothionein in rats, in Methods in Enzymology: Metallobiochemistry of MT and Related Molecules, Vol. 205, J. F. Riordan and B. L. Vallee, eds., Academic Press, San Diego, CA, pp. 559–567 (1991).

    Google Scholar 

  5. M. P. Waalkes and P. L. Goering, Metallothionein and other cadmium-binding proteins: recent developments, Chem. Res. Toxicol. 3, 281–288 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. P. Z. Sobocinski, W. J. Canterbury, C. A. Mapes, and R. E. Dinterman, Involvement of hepatic metallothioneins in hypozincemia associated with bacterial infection, Am. J. Physiol. 234, E399-E406 (1978).

    PubMed  CAS  Google Scholar 

  7. A. H. Shankar and A. S. Prasad, Zinc and immune function: the biological basis of altered resistance to infection, Am. J. Clin. Nutr. 68, S447-S463 (1998).

    Google Scholar 

  8. A. Frank, V. Galgan, A. Roos, M. Olsson, L. R. Petersson, and A. Bignert, Metal concentration in seals from Swedish waters, AMBIO 21, 529–538 (1992).

    Google Scholar 

  9. N.-G. Ilbäck, U. Lindh, J. Fohlman, and G. Friman, New aspects from murine coxsackie B3 myocarditis—focus on heavy metals, Eur. Heart J. 16, 20–24 (1995).

    PubMed  Google Scholar 

  10. N.-G. Ilbäck, J. Fohlman, and G. Friman, The protective effect of selenium on the development of coxsackievirus B3 induced inflammatory lesions in the murine myocardium, J. Trace Element Exp. Med. 2, 257–266 (1989).

    Google Scholar 

  11. M. A. Beck and O. A. Levander, Dietary oxidative stress and the potentiation of viral infection, Annu. Rev. Nutr. 18, 93–116 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. M. Merza, E. Larsson, M. Steen, and B. Morein, Association of a retrovirus with a wasting condition in the Swedish moose, Virology 202, 956–961 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. A. Frank, V. Galgan, and L. R. Petersson, Secondary copper deficiency, chromium deficiency and trace element imbalance in the moose (Alces alces L.): effect of anthropogenic activity, AMBIO 23, 315–317 (1994).

    Google Scholar 

  14. V. Galgan and A. Frank, Survey of bioavailable selenium in Sweden with the moose (Alces alces L.) as monitoring animal, Sci. Total Environ. 172, 37–45 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. J. F. Woodruff, Viral myocarditis. A review, Am. J. Pathol. 101, 424–479 (1980).

    Google Scholar 

  16. S. A. Huber, Animal models: immunological aspects, in Viral Infections of the Heart, J. E. Banatvala, ed., Hodder and Stoughton, London, pp. 82–109 (1993).

    Google Scholar 

  17. E. K. Godeny and C. J. Gauntt, Murine natural killer cells limit coxsackievirus B3 replication, J. Immunol. 139, 913–918 (1987).

    PubMed  CAS  Google Scholar 

  18. A. Henke, S. Huber, A. Stelzner, and J. L. Whitton, The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis, J. Virol. 69, 6720–6728 (1995).

    PubMed  CAS  Google Scholar 

  19. Y. Seko, Y. Shinkai, A. Kawasaki, H. Yagita, K. Okumura, F. Takaku, et al., Expression of perforin in infiltrating cells in murine hearts with acute myocarditis caused by coxsackievirus B3, Circulation 84, 788–795 (1991).

    PubMed  CAS  Google Scholar 

  20. A. Stallion, J. F. Rafferty, B. W. Warner, M. M. Ziegler, and F. C. Ryckman, Myocardial calcification: a predictor of poor outcome for myocarditis treated with extracorporeal life support, J. Pediatr. Surg. 29, 492–494 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. L. H. Chow, C. J. Gauntt, and B. M. McManus, Differential effects of myocarditic variants of Coxsackievirus B3 in inbred mice—a pathologic characterization of heart tissue damage, Lab. Invest. 64, 55–64 (1991).

    PubMed  CAS  Google Scholar 

  22. J. F. Woodruff and E. D. Kilbourne, The influence of quantitated post weaning undernutrition in coxsackievirus B3-infection of adult mice. I. Viral persistence and increased severity of lesions, J. Infect. Dis. 121, 137–163 (1970).

    PubMed  CAS  Google Scholar 

  23. P. O. K. Stålhandske, M. Lindberg, and U. Petterson, Genome of coxsackievirus B3, Virology 156, 50–63 (1987).

    Article  PubMed  Google Scholar 

  24. M. Kallajoki, H. Kalimo, L. Wesslén, P. Auvinen, and T. Hyypiä, In situ detection of enterovirus genomes in mouse myocardial tissue by ribonucleic acid probes, Lab. Invest. 63, 669–675 (1990).

    PubMed  CAS  Google Scholar 

  25. G. Friman, N.-G. Ilbäck, and W. R. Beisel, The effect of strenuous exercise on infection with Franciscella tularensis in rats, J. Infect. Dis. 145, 706–714 (1982).

    PubMed  CAS  Google Scholar 

  26. N.-G. Ilbäck, G. Friman, R. L. Squibb, A. J. Johnson, D. A. Balentine, and W. R. Beisel, The effect of exercise and fasting on the myocardial protein and lipid metabolism in experimental bacterial myocarditis, Acta Pathol. Microbiol. Immunol. Scand. 92, 195–204 (1984).

    Google Scholar 

  27. B. M. Altura and B. T. Altura, Cardiovascular risk factors and magnesium: relationships to atherosclerosis, ischemic heart disease and hypertension, Magnes. Trace Element 10, 182–192 (1991).

    CAS  Google Scholar 

  28. G. Bo-Qi, Pathology of Keshan disease—a comprehensive review, Chin. Med. J. 96, 251–261 (1983).

    Google Scholar 

  29. M. A. Beck, P. C. Kolbeck, Q. Shi, C. V. Morris, and O. A. Levander, Increased virulence of a human enterovirus (coxsackievirus B3) in selenium-deficient mice, J. Infect. Dis. 170, 351–357 (1994).

    PubMed  CAS  Google Scholar 

  30. L. Kiremidjian, M. Roy, H. I. Wishe, M. W. Cohen, and G. Stotzky, Supplementation with selenium augments the functions of natural killer and lymphokine-activated killer cells, Biol. Trace Element Res. 52, 227–239 (1996).

    Google Scholar 

  31. N.-G. Ilbäck, J. Fohlman, and G. Friman, Effects of selenium supplementation on virus-induced inflammatory heart disease, Biol. Trace Element Res. 63, 51–66 (1998).

    Google Scholar 

  32. E. D. Savlov, W. H. Strain, and F. Heugin, Radio zinc studies in experimental wound healing, J. Surg. Res. 2, 209–212 (1962).

    Article  PubMed  CAS  Google Scholar 

  33. S. Cunningham-Rundles, Zinc modulation of immune function: specificity and mechanism of interaction, J. Lab. Clin. Med. 128, 9–11 (1991).

    Article  Google Scholar 

  34. P. J. Fraker, P. DePasquale-Jardieu, C. M. Zwickl, and R. W. Luecke, Regeneration of T-helper cell functions in zinc deficient adult mice, Proc. Natl. Acad. Sci. 75, 5660–5664 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. L. Tapazoglou, A. S. Prasad, G. Hill, G. F. Brewer, and J. Kaplan, Decreased natural killer cell activity in patients with zinc deficiency with sickle cell disease, J. Lab. Clin. Med. 105, 19–22 (1985).

    PubMed  CAS  Google Scholar 

  36. S. S. Percival, Copper and immunity, Am. J. Clin. Nutr. 67, S1064-S1068 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funseth, E., Lindh, U., Wesslén, L. et al. Trace element changes in the myocardium during coxsackievirus B3 myocarditis in the mouse. Biol Trace Elem Res 76, 149–160 (2000). https://doi.org/10.1385/BTER:76:2:149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:76:2:149

Index Entries

Navigation