Skip to main content

In vitro dialyzability of zinc from different salts used in the supplementation of infant formulas

Abstract

Seven zinc salts—acetate, chloride, lactate, sulfate, citrate, gluconate, and oxide—were added to milk—and soy-based infant formulas to estimate possible differences in zinc availability depending on the type of salt used. For this purpose, an in vitro method that estimates the dialyzability of the element (i.e., the fraction available for absorption) was applied. Zinc dialyzability is always higher in milk-based products than in soy products, even when the total zinc contents are higher in the latter.

The salts can be classified according to the zinc dialyzability in the two types of formulas as follows: oxide>gluconate=chloride=lactate>citrate=acetate>sulfate. Therefore, according to the dialysis percentage, oxide and gluconate are the compounds of choice for zinc supplementation of infant formulas.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. A. Milner, Trace minerals in the nutrition of children, J. Pediatr. 117, S147-S155 (1990).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    B. Sandström, Bioavailability of zinc, Eur. J. Clin. Nutr. 51(Suppl. 1), S17-S19 (1997).

    PubMed  Google Scholar 

  3. 3.

    A. H. Shankar and A. S. Prassad, Zinc and inmune function:the biological basis of altered resistance to infection, Am. J. Clin. Nutr. 68(Suppl. 2), 447S-463S (1998).

    PubMed  CAS  Google Scholar 

  4. 4.

    I. Lombeck and A. Fuchs, Zinc and copper in infants fed breast-milk or different formula, Eur. J. Pediatr. 153, 770–776 (1994).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    National Research Council (NRC), Recommended Dietary Allowances, 10th ed., National Academy of Sciences, Washington, DC (1989).

    Google Scholar 

  6. 6.

    B. Lönnerdal, M. Yuen, and M. S. Huang, Calcium, iron, zinc, copper and manganese bioavailability from infant formulas and weaning diets assessed in rat pups, Nutr. Res. 14, 1535–1548 (1994).

    Article  Google Scholar 

  7. 7.

    P. A. Walravens and K. M. Hambidge, Growth of infants fed a zinc supplemented formula, Am. J. Clin. Nutr. 29, 1114–1121 (1976).

    PubMed  CAS  Google Scholar 

  8. 8.

    A. Higashi, T. Ikeda, Y. Uehara, and Y. Matsuda, Effect of low content zinc and copper formula on infant nutrition, Eur. J. Pediatr. 138, 237–240 (1982).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    F. Jochum, A. Fuchs, A. Cser, H. Menzel, and I. Lombeck, Trace mineral status of full-term infants fed human milk, milk-based formula or partially hydrolysed whey, Analyst 120, 905–909 (1995).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    L. Salmenperä, J. Perheentupa, V. Nantö, and M. A. Siimes, Exclusively breast-fed healthy infants grow slower than reference infants, Pediatr. Res. 19, 307–312 (1985).

    PubMed  Article  Google Scholar 

  11. 11.

    L. Salmenperä, J. Perheentupa, P. Pakarinen, and M. A. Siimes, Zinc supplementaton of infant formula, Am. J. Clin. Nutr. 59, 985–989 (1994).

    PubMed  Google Scholar 

  12. 12.

    L. Schlesinger, M. Arevalo, S. Arredondo, M. Diaz, B. Lönnerdal, and A. Stekel, Effect of a zinc-fortified formula on immunocompetence and growth of malnourished infants, Am. J. Clin. Nutr. 56, 491–498 (1992).

    PubMed  CAS  Google Scholar 

  13. 13.

    J. K. Friel, W. L. Andrews, J. D. Matthew, R. D. Long, A. M. Corned, M. Cox, et al., Zinc supplementation in very low birth weight infant, J. Pediatr. Gastroenterol. Nutr. 17, 97–104 (1993).

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    EEC: Commission Directive 91/321/EEC of 14 May 1991 on infant formulae and follow-on formulae. No. L175, 4/7/1991, pp. 35–49.

  15. 15.

    D. D. Miller, B. R. Schricker, R. R. Rasmussen, and D. Van Campen, An in vitro method for estimation of iron availability from meals, Am. J. Clin. Nutr. 34, 2248–2256 (1981).

    PubMed  CAS  Google Scholar 

  16. 16.

    J. Luten, H. Crews, A. Flynn, P. Van Dael, P. Kastenmayer, R. Hurrell, et al., Interlaboratory trial on the determination of the in vitro iron dialysability from food, J. Sci. Food Agric. 72, 415–424 (1996).

    Article  Google Scholar 

  17. 17.

    B. Lönnerdal, Nutritional aspects of soy formula, Acta Paediatr. 83(Suppl. 402), 105–108 (1994).

    Google Scholar 

  18. 18.

    B. Lönnerdal, A. Cederblad, A. Davidsson, and B. Sandström, The effect of individual components of soy formula and cow’s milk formula on zinc bioavailability, Am. J. Clin. Nutr. 40, 1064–1070 (1984).

    PubMed  Google Scholar 

  19. 19.

    A. A. Minihane, T. E. Fox, and S. J. Fairweather-Tait, A continuous flow in vitro method to predict bioavailability of Fe from foods, in Bioavailability ’93. Nutritional, Chemical and Food Processing Implications Nutrient Availability, Proceedings, U. Schlemmer, ed., Bundesforschungs anstalt für Ernährung, Ettlingen, Germany, Pt. 2, pp. 175–179 (1993).

    Google Scholar 

  20. 20.

    L. Shen, J. Luten, H. Robberecht, J. Bindels, and H. Deelstra, Modification of an in-vitro method for estimating the bioavailability of zinc and calcium from foods, Z. Lebensm. Unters. Forsch. 199, 442–445 (1994).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    H. M. Edwards, Jr., The availability to chicks of zinc in various compounds and ores, J. Nutr. 69, 306–309 (1959).

    PubMed  CAS  Google Scholar 

  22. 22.

    D. A. Hill, A. R. Peo, Jr., A. J. Lewis, and J. D. Crenshaw, Zinc-amino acid complexes for swine, J. Anim. Sci. 63, 121–127 (1986).

    PubMed  CAS  Google Scholar 

  23. 23.

    J. W. Spears, Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers, J. Anim. Sci. 67, 835–843 (1989).

    PubMed  CAS  Google Scholar 

  24. 24.

    J. L. Pimentel, M. E. Cook, and J. L. Greger, Immune response of chicks fed various levels of zinc, Poult. Sci. 70, 947–954 (1991).

    PubMed  CAS  Google Scholar 

  25. 25.

    L. X. Rojas, L. R. McDowell, R. J. Cousins, F. G. Martin, N. S. Wilkinson, A. B. Johnson, et al., Interaction of different organic and inorganic zinc and copper sources fed to rats, J. Trace Element Med. Biol. 10, 139–144 (1996).

    CAS  Google Scholar 

  26. 26.

    K. J. Wedekind and D. H. Baker, Zinc bioavailability in feed-grade zinc sources, J. Anim. Sci. 67(Suppl. 2), 126–132 (1989).

    Google Scholar 

  27. 27.

    K. J. Wedekind and D. H. Baker, Zinc bioavailability in feed-grade sources of zinc, J. Anim. Sci. 68, 684–689 (1990).

    PubMed  CAS  Google Scholar 

  28. 28.

    K. J. Wedekind and D. H. Baker, Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulphate and zinc oxide. J. Anim. Sci. 70, 178–187 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Farré.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guillem, A., Alegría, A., Barberá, R. et al. In vitro dialyzability of zinc from different salts used in the supplementation of infant formulas. Biol Trace Elem Res 75, 11–19 (2000). https://doi.org/10.1385/BTER:75:1-3:11

Download citation

Index Entries

  • Dialyzability
  • infant formulas
  • supplementation
  • zinc