Skip to main content
Log in

Alteration in cardiomyocyte mechanics by suboptimal levels of extracellular magnesium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The beneficial effects of magnesium supplementation in pathological situations is well known, but the myocardial response to a nominal decrease in the level of magnesium has received relatively little attention. Hypomagnesemia can occur as chronic or acute manifestation of physiological changes, pathological conditions, or pharmacological interventions. Experimental interest was focused on the mechanical changes in adult rat heart myocytes following variation in extracellular Mg2+. Isolated cells were exposed to different levels of extracellular Mg2+ and the amplitude and rate of contraction were measured as a function of change in cell length using a video-based edge-detection system. Investigations have revealed that variation in the level of Mg2+ within physiological limits leads to mechanical changes. A decrease in the level of extracellular Mg2+ was accompanied by a significant increase in contractile amplitude and decrease in the velocities of contraction and relaxation. The contractile amplitude measured as percentage shortening were 3.08 ± 0.19%, 4.62 ± 0.19% and 6.9 ± 0.40%, respectively, on exposure to 1.8, 0.8, and 0.48 mM Mg, and the corresponding velocities of contraction and relaxation normalized to amplitude were 0.54 ± 0.02, 0.40 ± 0.03, 0.31 ± 0.03 and 0.47 ± 0.02, 0.35 ± 0.02, 0.24 ± 0.02. The variations in contractile parameters associated with the change in the level of Mg were statistically significant (p < 0.01). Variation in the contractile properties associated with change in extracellular Mg2+ may be effected by alteration in Ca2+ transients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Shattock, D. J. Hearse, and C. H. Fry, The ionic basis of the anti-ischemic and anti-arrhythmic properties of magnesium in the heart, J. Am. Coll. Nutr. 1, 27–33 (1987).

    Google Scholar 

  2. J. H. Kirkels, C. J. A. van Etcheld, and T. J. C. Ruigrok, Intracellular magnesium during myocardial ischemia and reperfusion: possible consequences for post ischemic recovery, J. Mol. Cell. Cardiol. 21, 1209–1218 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. C. H. Fry and A. V. Proctar, The effects of magnesium on excitable tissues, in Magnesium and Cell, N. J. Birch, ed., Academic Press, New York, pp. 215–234 (1993).

    Google Scholar 

  4. S. Nishiyama, N. Saito, Y. Konishi, Y. Abe, and K. Kusumi, Cardiotoxicity in magnesium deficient rats fed cadmium. J. Nutr. Sc. Vitaminol. 36, 33–44 (1990).

    CAS  Google Scholar 

  5. B. M. Altura, B. T. Altura, A. Carella, A. Gebrawold, T. Murakawa, and A. Nishio, Mg2+-Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus inorganic Ca2+ channel blockers on myogenic tone and agonist induced responsiveness of blood vessels, Can J. Physiol. Pharmacol. 65, 729–745 (1987).

    PubMed  CAS  Google Scholar 

  6. H. J. Huijgen, R. Sanders, R. W. van Olden, M. G. K. Lous, F. R. Gaffar, and G. T. B. Sanders, Intracellular and extracellular blood magnesium fractions in hemodialysis patients; is the ionized fraction a measure of magnesium excess? Clin. Chem. 44, 639–648 (1998).

    PubMed  CAS  Google Scholar 

  7. E. Ryzen, K. L. Servis, and R. K. Rude, Effect of intravenous epinephrine on serum magnesium and free intracellular red blood cell magnesium concentrations measured by NMR, J. Am. Coll. Nutr. 9, 114–119 (1990).

    PubMed  CAS  Google Scholar 

  8. R. R. Nair, J. T. Eapen, C. Radhakumari, and S. Rajasree, Magnesium deficiency in serum and erythrocyte of children from Kerala, Natl. Med. J. India 8, 118–120 (1995).

    PubMed  CAS  Google Scholar 

  9. J. Durlach, M. Bara, and A. Guiet-bara, Magnesium level in drinking water: its importance in cardiovascular risk, in Magnesium in Health and Disease, Y. Itokawa and J. Durlach, eds., John Libby and Co. Ltd., London, pp. 173–182 (1989).

    Google Scholar 

  10. J. S. Frank and G. A. Langer, The myocardial interstitium: its structure and its role in ionic exchange. J. Cell Biol. 60, 586–601 (1974).

    Article  PubMed  CAS  Google Scholar 

  11. B. Prakash Kumar, K. Shivakumar, and C. C. Kartha, Magnesium deficiency related changes in lipid peroxidation and collagen metabolism in-vivo in rat heart, Int. J. Biochem. Cell Biol. 29, 129–134 (1997).

    Article  Google Scholar 

  12. P. Nair and R. R. Nair, Selective use of calcium chelators enhances the yield of calcium-tolerant myocytes from adult rat heart, Indian J. Exptl. Biol. 35, 451–456 (1997).

    CAS  Google Scholar 

  13. S. E. Harding, G. Vescovo, M. Kuby, S. M. Jones, J. Gurden, and P. A. Poole-Wilson, Contractile responses of adult rat and rabbit cardiac myocytes to isoproterenol and calcium, J. Mol. Cell. Cardiol. 20, 635–647 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. I. Shine, Myocardial effects of magnesium, Am. J. Physiol. 237, H413-H423 (1979).

    PubMed  Google Scholar 

  15. S. K. Hall and C. H. Fry, Magnesium affects excitation, conduction and contraction of isolated mammalian cardiac muscle, Am. J. Physiol. 263, H622-H633 (1992).

    PubMed  CAS  Google Scholar 

  16. M. Bara, A. Guiet-Bara, and J. Durlach, Regulation of sodium and potassium pathways by magnesium in cell membrane, Magnesium Res. 6, 167–177 (1993).

    CAS  Google Scholar 

  17. B. M. Altura, A. Gebrewold, B. T. Altura, and N. Brandbar, Magnesium depletion impairs myocardial carbohydrate and lipid metabolism and cardiac bioenergetics and raises myocardial calcium content in vivo: relation to etiology of cardiac diseases, Biochem. Mol. Biol. Int. 6, 1183–1190 (1996).

    Google Scholar 

  18. J. Durlach, V. Durlach, P. Bac, Y. Rayssiguia, M. Bara, and A. Guiet-Bara, Magnesium and aging II Clinical data: Aetiological mechanisms and pathophysiological consequences of magnesium deficit in the elderly, Magnesium Res. 6, 379–394 (1993).

    CAS  Google Scholar 

  19. M. Seelig, Consequences of magnesium deficiency on the enhancement of stress reactions: preventive and therapeutic implications (a review), J. Am. Coll. Nutr. 13, 429–446 (1994).

    PubMed  CAS  Google Scholar 

  20. T. Gunther, J. Merka II, R. Averdunk, and H. W. Pefer, and K. Wonigetit, Membrane alterations in magnesium deficiency induced in malignant T-cell lymphoma, Magnesium 3, 29–37 (1984).

    PubMed  CAS  Google Scholar 

  21. G. H. Beaven, J. Parmar, G. B. Nash, B. H. Bennett, and W. B. Gratzer, Effect of magnesium ions on red cell membrane stability, J. Memb. Biol. 18, 251–257 (1990).

    Article  Google Scholar 

  22. S. E. Cyran, S. E. Ditty, B. G. Baylen, J. Cheung, and K. L. la Nove, Developmental differences in the response of cytosolic free calcium to potassium depolarization and cardioplegia in cardiac myocytes, J. Mol. Cell. Cardiol. 24, 1167–1177 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. L. T. Iseri and J. H. French, Magnesium: nature’s physiological calcium blocker, Am. Heart J. 108, 188–193 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. F. W. Heaton, S. Tongyai, and Y. Rayssiguier, Membrane function in magnesium deficiency, in Magnesium in Health and Disease, Y. Itokawa and J. Durlach, eds., John Libbey and Co., London, pp. 27–34 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, P., Nair, R.R. Alteration in cardiomyocyte mechanics by suboptimal levels of extracellular magnesium. Biol Trace Elem Res 73, 193–200 (2000). https://doi.org/10.1385/BTER:73:3:193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:73:3:193

Index Entries

Navigation