Skip to main content
Log in

Atrial natriuretic peptide and thyroid hormones’ relation to plasma and heart calcium and magnesium concentrations of wistar rats exposed to cold and hot ambients

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Plasma ANP (atrial natriuretic peptide), thyroid hormones, and calcium and magnesium levels as well as heart tissue calcium and magnesium concentrations were determined in male Wistar rats after exposure of 114 rats at low temperature (4°C) and 95 rats at high temperature (35–36°C) for 28 d. Plasma ANP, triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), free T3, and free T4 were estimated by radioimmunoassay, and plasma and heart tissue levels of Ca and Mg by flame atomic absorption spectrophotometry. Results were compared to a control group exposed at 20–22°C (76 rats).

All the above parameters in control rats did not show statistically significant variations during the study. A significant increase of plasma ANP, T3, T4, Ca, and Mg concentrations developed during cold exposure, whereas a gradual decrease of plasma ANP, T3, T4, and Mg concentrations was revealed during hot exposure. A significant increase of heart tissue Mg concentrations developed during hot exposure. Results also indicate that plasma ANP and T3 levels are proportionally related, whereas an inverse relationship exists between plasma ANP and T3 levels and heart Mg concentrations, in both cold and hot exposed rats. In conclusion, ANP and thyroid hormones in relation to Ca and Mg play an important role in temperature adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Sestoft, Metabolic aspects of the caloregenic effect of thyroid hormone in mammals, Clin. Endocrinol. 13, 489–506 (1980).

    CAS  Google Scholar 

  2. S. Vybiral, J. F. Andrews, J. Bostik, P. Langer, and L. Jansky, Thyroid hormones in rats during long term cold exposure and hypometabolic effect of reverse triiodothyronine on adrenaline induced thermogenesis, Endocrinol. Exp. 19, 179–185 (1985).

    PubMed  CAS  Google Scholar 

  3. P. R. Herpin, B. W. McBride, and H. S. Bayley, Effect of cold exposure on energy metabolism in the young pig, Can. J. Physiol. Pharmacol. 65, 236–245 (1987).

    PubMed  CAS  Google Scholar 

  4. P. Vezyraki, Hormonal alterations and trace metals fluctuations in cold and hot exposed Wistar rats, Ph.D. thesis, Faculty of Medicine, Ioannina University, Ioannina, Greece (1991).

    Google Scholar 

  5. D. A. Fisher and W. D. Odell, Effect of cold on TSH secretion in man, J. Clin. Endocrinol. Metab. 33, 859–862 (1971).

    PubMed  CAS  Google Scholar 

  6. S. Reichlin, Function of the hypothalamus in regulation of pituitary-thyroid activity, in Brain-Thyroid Relashionships, M. P. Cameron and M. O’Conor, eds., Little & Brown, Boston, pp. 17–34 (1964).

    Google Scholar 

  7. D. E. Gardner, B. J. Certz, and S. Hans, Thyroid hormone increases rat atrial natriuretic peptide messenger ribonucleic acid accumulation in vivo and in vitro, Mol. Endocrinol. 1, 260–265 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. P. W. Landenson, K. D. Bloch, and J. G. Seidman, Modulation of atrial natriuretic factor by thyroid hormone: messenger ribonucleic acid and peptide levels in hypothyroid, euthyroid and hyperthyroid rat atria and ventricles, Endocrinology 123, 652–657 (1988).

    Article  Google Scholar 

  9. K. D. Burman, J. M. Monchic, J. M. Earll, and L. Wartofsky, Ionized and total serum calcium and parathyroid hormone in hyperthyroidism, Ann. Intern. Med. 84, 668–671 (1976).

    PubMed  CAS  Google Scholar 

  10. H. C. Ford, M. J. Crooke, and C. E. Murphy, Disturbances of calcium and magnesium metabolism occur in most hyperthyroid patients, Clin. Biochem. 22, 373–376 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. R. K. Rude, Magnesium metabolism and deficiency, Endocrinol. Metab. Clin. North Am. 22, 337–395 (1993).

    Google Scholar 

  12. H. Matsubara, Y. Hirata, H. Hoshimi, S. Takata, Y. Takagi, Y. Uweda, et al., Role of calcium and protein kinase C in ANP secretion by cultured rat cardiomocytes, Am. J. Physiol. 255 (Heart Circ. Physiol. 24), H405-H409 (1988).

    PubMed  CAS  Google Scholar 

  13. G. Thibault and A. F. Doubell, Binding and aggregation of proartial natriuretic factor by calcium, Am. J. Physiol. 262(Cell Physiol. 31), C907-C915 (1992).

    PubMed  CAS  Google Scholar 

  14. H. Rasmussen, Ionic and hormonal control calcium homeostasis, Am. J. Med. 50, 567–588 (1971).

    Article  PubMed  CAS  Google Scholar 

  15. G. Le Blondel and P. Allain, Effects of thyroparathyroidectomy and of thyroxin and calcitonin on the tissue distribution of twelve elements in the rat, Biol. Trace Element Res. 19, 171–183 (1989).

    Article  Google Scholar 

  16. Y. C. Tseng, D. F. Sellitti, A. J. Ahmann, K. D. Burman, J. C. D Avis, and L. Wartofsky, Thyrotropin modulates receptors for atrial natriuretic peptide on intact human thyroid cells, Am. J. Med. Sci. 298, 15–19 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. T. Tikkanen, K. Metsarinne, and F. Fylirquist, Atrial natriuretic peptide in paroxysmal supraventricular tachycardia, Lancet 2(8445), 40–41 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. G. E. Bilder, P. K. Siegl, T. L. Schofield, and P. A. Friedman, Chronotropic stimulation: a primary effector for release of atrial natriuretic factor, Circ. Res. 64, 799–805 (1989).

    PubMed  CAS  Google Scholar 

  19. A. Hoffman and H. R. Keiser, Normal atrial natriuretic peptide release after acute and chronic stimuli in hypophysectomized rats, Am. J. Physiol. 257 (Regul. Integr. Comp. Physiol. 26), R522-R527 (1989).

    PubMed  CAS  Google Scholar 

  20. M. Kohno, K. Takaori, K. Mukamara, Y. Kanayama, and T. Takede, Atrial natriuretic polypeptides in atria and plasma in experimental hyperthyroidism and hyporthyroidism, Biochem. Biophys. Res. Commun. 134, 178–183 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. D. L. Vesely, C. J. Winters, and A. L. Sallman, Prohormone atrial natriuretic peptides 1–30 and 31–67 increase in hyperthyroidism and decrease in hypothyroidism, Am. J. Med. Sci. 297, 209–215 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. B. M. Brenner, B. J. Ballerman, M. E. Gunning, and M. L. Zeidel, Diverse biological actions of atrial natriuretic peptide, Physiol. Rev. 70, 665–699 (1990).

    PubMed  CAS  Google Scholar 

  23. H. Ruskoako, M. Toth, and R. E. Lang, Atrial natriuretic peptide secretion: synergistic effect of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 133, 581–588 (1985).

    Article  Google Scholar 

  24. M. I. De Bold and A. J. De Bold, Effect of manipulations of Ca2+ environment on atrial natriuretic release, Am. J. Physiol. 256, H1588-H1594 (1989).

    PubMed  Google Scholar 

  25. E. Page, J. Upshaw-Early, G. E. Goings, and D. A. Hank, Inhibition of atrial peptide secretion at different stages of the secretory process: Ca2+ dependence, Am. J. Physiol. 26(Cell Physiol. 30), C1162-C1172 (1991).

    Google Scholar 

  26. R. J. Schiebinger, G. M. Joseph, Y. Li, and E. J. Gragoe, Jr., Mechanism of hyperosmolarity stimulation of ANP secretion its depentancy of calcium and sodium, Am. J. Physiol 268 (Endocr. Metabl.), E476-E483 (1995).

    PubMed  CAS  Google Scholar 

  27. A. F. Doubelle and G. Thibault, Calcium is involved in both positive and negative modulation of the secretory system for ANP, Am. J. Physiol. 266(Heart Circ. Physiol. 35), H1854-H1863 (1994).

    Google Scholar 

  28. N. I. Wong, D. C. Hu, and E. F. Wong, Effect of dietary magnesium on atrial natriuretic peptide, Am. J. Physiol. 261, H1353-H1357 (1991).

    PubMed  CAS  Google Scholar 

  29. E. M. Mervaala, J. J. Himberg, J. Laasko, P. Tuomainen, and H. Karppanen, Beneficial effects of potasium- and magnesium-enriched salt alternative, Hypertension 19(6, Pt. 1), 535–540 (1992).

    PubMed  CAS  Google Scholar 

  30. L. J. Dai and G. A. Guamme, Cyclic nucleotides alter intracellular free Mg2+ in renal epithelial cells, Am. J. Physiol. 262(6, Pt. 2), F1100–1104 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vezyraki, P., Kalfakakou, V. & Evangelou, A. Atrial natriuretic peptide and thyroid hormones’ relation to plasma and heart calcium and magnesium concentrations of wistar rats exposed to cold and hot ambients. Biol Trace Elem Res 73, 163–173 (2000). https://doi.org/10.1385/BTER:73:2:163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:73:2:163

Index Entries

Navigation