Skip to main content
Log in

Selenium and glutathione peroxidase mRNA in rat glioma

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of current study was to determine the step at which dietary selenium (Se) regulates the transcriptional expression of the gene for Se-glutathione peroxidase (Se-GPx) in rat brain and transplanted glioma tissue. Wistar rats were fed a Se-free diet or the same diet supplemented with 0.5, 2.0, and 4.0 mg Se/kg as sodium selenite for at least 3 wk. Then, the rats were transplanted with C6 rat glioma cells into the right frontal lobe parenchyma. All rats were observed for 30 d, then tumor and contralateral brain tissue were excised and divided into three portions for purification of selenium content, for the assay of Se concentration, Se-GPx activity, and for Se-GPx mRNA. Se concentration and Se-GPx activity are increased with Se supplementation both in tumor tissue and contralateral brain tissue, and Se concentration in tumor is higher than that in contralateral brain tissue at each dietary Se content. Se-GPx mRNA of brain and tumor were probed with fragments from a rat Se-GPx cDNA in Northern blot analysis. There was significant differences of Se-GPx mRNA transcription in brain tumor tissue among each dietary group of the Se content, and the steady-state level of Se-GPx mRNA was markedly reduced by Se deficiency. These results suggest that dietary Se exerts its augmenting effect on Se-GPx gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Burk, Biological activity of selenium, Annu. Rev. Nutr. 3, 53–70 (1983)

    Article  PubMed  CAS  Google Scholar 

  2. D. G. Hafeman, R. A. Sunde, and W. G. Hoeckstra, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr. 10A, 580–587 (1974).

    Google Scholar 

  3. G. Batist, J. Norton, A. G. Katki, L. Wagman, V. J. Ferrans, M. Mather, et al., Cardiac and red blood cell glutathione peroxidase: results of a prospective randomized trial in patients on total parenteral nutrition, Cancer Res. 45, 5900–5903 (1985).

    PubMed  CAS  Google Scholar 

  4. S. L. Weiss, J. K. Evenson, and K. M. Thompson, The selenium requirement for glutathione peroxidase mRNA level is half of the selenium requirement for glutathione peroxidase activity in female rats, J. Nutr. 126, 2260–2267 (1996).

    PubMed  CAS  Google Scholar 

  5. Nutrient Requirements of Laboratory Animals, National Academy of Sciences, Washington, DC, pp. 18–19 (1978)

  6. K. Sekine, M. Kimura, and Y. Itokawa, Determination of selenium in biological samples by hydrogen selenide evolution electrothermal atomic absorption method, Jpn. Trace Nutr. Res. 1, 117 (1984).

    Google Scholar 

  7. K. Douglas, Radiobiology of radiosurgery Part II, the rat C6 glioma model, Neurosurgery 31, 280–288 (1992).

    Article  Google Scholar 

  8. R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. Commun. 71, 952–958 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. L. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–958 (1976)

    Google Scholar 

  10. J. B. Takahashi, M. Hoshimaru, H. Kikuchi, and M. Hatanaka, Developmental expression of trkB and low-affinity NGF receptor in the rat retina, Neurosci. Lett. 51, 174–177 (1993).

    Article  Google Scholar 

  11. S. Yoshimura, S. Takekoshi, K. Watanabe, and Y. Fujii-Kuriyama, Determination of nucleotide sequence of cDNA coding rat glutathione peroxidase and diminished expression of the total RNA in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 154, 1024–1028 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. H. Gronbaek and O. Thorlacius-Ussing: Selenium in the central nervous system of rats exposed to 75-Se l-selenomethionine and sodium selenite, Biol. Trace Element Res. 35(2), 119–127 (1992).

    CAS  Google Scholar 

  13. D. Behne, Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochem. Biophys. Acta 966(1), 12–21 (1988).

    PubMed  CAS  Google Scholar 

  14. Z. Zhu, M. Kimura, Y. Itokawa, S. Nakatsu, Y. Oda, and H. Kikuchi, Effect of selenium on malignant tumor cells of brain, Biol. Trace Element Res. 49, 1–7 (1995).

    CAS  Google Scholar 

  15. R. G. Blasberg, P. Molnar, M. Holowitz, P. Kornblith, R. Pleasants, and J. Fentstermacher, J. Neurosurg. 58, 863–873 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. A. L. Tappel, Selenium-glutathione peroxidase: properties and synthesis, Curr. Top. Cell Regul. 24, 87–97 (1984).

    PubMed  CAS  Google Scholar 

  17. K. Yasumoto, K. Iwami, and M. Yoshida, Vitamin B6-dependence of selenomethionine and selenite utilization for glutathione peroxidase in the rat, J. Nutr. 109, 760–766 (1979).

    PubMed  CAS  Google Scholar 

  18. S. S. Baker and H. J. Cohen, Altered oxidative metabolism in selenium deficient rat granulocytes, J. Immunol. 130, 2856–2860 (1983).

    PubMed  CAS  Google Scholar 

  19. A. M. VanRij, C. D. Thompson, J. M. McKenzie, and M. F. Robinson, Selenium deficiency in total parenteral nutrition, Am. J. Clin. Nutr. 32(10), 2076–2085 (1979).

    CAS  Google Scholar 

  20. H. J. Cohen, M. E. Chovaniec, D. Mistretta, and S. S. Baker, Selenium repletion and glutathione peroxidase—differential effect on plasma and red blood cell enzyme activity, Am. J. Clin. Nutr. 41(4), 735–747 (1985).

    PubMed  CAS  Google Scholar 

  21. F. F. Chu, E. S. Steven, S. Akman, and J. H. Doroshow, Modulation of glutathione peroxidase expression by selenium: effect on human MCF-7 breast cancer cell transfecants expressing a cellular glutathione peroxidase cDNA and doxorebicin-resistant MCF-7 cells, Nucleic Acid Res. 18(6), 1531–1539 (1989).

    Article  Google Scholar 

  22. S. Chada, C. Whitney, and P. Enewburger, Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in HL-60 human myeloid cell line, Blood 74, 2535–2541 (1989).

    PubMed  CAS  Google Scholar 

  23. A. P. Reddy, B. L. Hsu, P. S. Reddy, N. Li, K. Thyagaraju, C. C. Reddy, M. F. Tam, and C.-P. D. Tu, Expression of glutathione peroxidase I gene in selenium deficient rats, Nucleic Acids Res. 16, 5557–5568 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. M. Akasaka, J. Mizoguchi, and K. Takahashi, A human cDNA sequence for a novel glutathione peroxidase-related protein, Nucleic Acids Res. 18(15), 4619 (1990).

    PubMed  CAS  Google Scholar 

  25. D. K. Dunn, D. D. Howells, I. P. Richardson, and P. S. S. L. Goldfarb, A human cDNA sequence for a novel glutathione peroxidase-related selenopeptide, GPRP, Nucleic Acids Res. 17(15), 6390 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. J. Ross, Messenger RNA turnover in eukaryotic cells, Mol. Biol. Med. 5, 1–14 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Miyatake, SI., Saiki, M. et al. Selenium and glutathione peroxidase mRNA in rat glioma. Biol Trace Elem Res 73, 67–76 (2000). https://doi.org/10.1385/BTER:73:1:67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:73:1:67

Index Entries

Navigation