Skip to main content
Log in

Copper and zinc concentrations and the activities of ceruloplasmin and superoxide dismutase in atherosclerosis obliterans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The relationships among concentrations of copper and zinc, the oxidase activity of ceruloplasmin (Cp) in serum, and Cu,Zn-SOD (superoxide dismutase) activity in erythrocytes were investigated in men with atherosclerosis obliterans (AO) and a control group. The oxidase activity of Cp was measured with o-dianisidine dihydrochloride as a substrate, and Cu,Zn-SOD activity in erythrocytes by using the RANSOD kit. The lipid profile and uric acid concentration were determined in AO and control groups.

The results showed higher copper and zinc concentrations in serum in the AO group (20.0±3.5 and 18.0±3.2 µmol/L, respectively) in comparison with the control group (15.6±2.3 and 14.7±1.9 µmol/L). The Cp activity in serum was higher in the AO group (174.2±61.8 U/L) than in the control group (93.7±33.9 U/L), and a significant difference was found in the activity of Cu,Zn-SOD in erythrocytes (2389±1396 and 1245±365 U/g Hb, respectively) between both groups.

The activity of Cu,Zn-SOD was positively correlated with copper in the control group (r=0.73), but not in AO, and negatively with uric acid concentration (r=−0.63) in the AO group. The oxidase activity of Cp was correlated with copper, but not zinc, in AO and control groups (r≥0.65). Negative correlation coefficients were calculated for uric acid and copper and zinc concentrations in the AO group (−r≥0.61).

Increased copper concentrations and oxidase activity of Cp in serum in AO and the activity of Cu,Zn-SOD in erythrocytes could result from atherosclerotic disease, accompanied by chronic ischemia of a lower limb. These results suggest also that relationship between copper concentration and Cu,Zn-SOD activity in erythrocytes found in the serum of healthy subjects may be disturbed in pathologic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Price Anderson and L. Wilson McCarty, Disturbances of circulation, in: Pathophysiology. Clinical Concepts of Disease Processes, 2nd ed., S. Anderson Price and L. McCarty Wilson, eds., McGraw-Hill, New York, pp. 83–85 (1982).

    Google Scholar 

  2. L. M. Klevay, Interactions of copper and zinc in cardiovascular disease, Ann. NY Acad. Sci. 355, 140–151 (1980).

    Article  PubMed  CAS  Google Scholar 

  3. L. M. Klevay, Copper and ischemic heart disease, Biol. Trace Element Res. 5, 245–255 (1983).

    CAS  Google Scholar 

  4. Th. G. Aalbers and J. P. W. Houtman, Relationships between trace elements and atherosclerosis, Sci. Total Environ. 43, 255–283 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. R. B. Singh, H. Mori, and F. A. Kummerow, Macro and trace mineral metabolism in coronary heart disease, Trace Elements Med. 9, 144–156 (1992).

    Google Scholar 

  6. D. A. Schuschke, J. T. Saari, F. N. Miller, and D. G. Lominadze, Microvascular control mechanisms in copper deficiency, J. Trace Element Exp. Med. 9, 63–72 (1996).

    Article  CAS  Google Scholar 

  7. T. A. Garrow, M. S. Clegg, G. Metzler, and C. L. Keen, Influence of hypertension and dietary copper on indexes of copper status in rats, Hypertension, 17, 793–797 (1991).

    PubMed  CAS  Google Scholar 

  8. H. Kuivanieni, L. Peltonen, A. Palotie, I. Kaitlia, and K. I. Kivirikko, Abnormal copper metabolism and deficient lysyl oxidase activity in a heritable connective tissue disorder, J. Clin. Invest. 69, 730–733 (1982).

    Google Scholar 

  9. E. D. Harris, Biochemical defect in chick lung resulting from copper deficiency, J. Nutr. 116, 252–258 (1986).

    PubMed  CAS  Google Scholar 

  10. B. Hennig, M. Toborek, and C. J. McClain, Antiatherogenic properties of zinc: implications in endothelial cell metabolism, Nutrition, 12, 711–717 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. M. Iskra, J. Patelski, and W. Majewski, Concentrations of calcium, magnesium, zinc and copper in relation to free fatty acids and cholesterol in serum of atherosclerotic men, J. Trace Element Electrol. Health Dis. 7, 185–188 (1993).

    CAS  Google Scholar 

  12. M. Iskra, J. Patelski, and W. Majewski, Relationship of calcium, magnesium, zinc and copper concentrations in the arterial wall and serum in atherosclerosis obliterans and aneurysm, J. Trace Elements Med. Biol. 11, 248–252 (1997).

    CAS  Google Scholar 

  13. E. L. Saenko, A. I. Yaropolov, and E. D. Harris, Biological functions of ceruloplasmin expressed through copper-binding sites and a cellular receptor, J. Trace Element Exp. Med. 7, 69–88 (1994).

    CAS  Google Scholar 

  14. J. M. McCord and I. Fridovich, Superoxide dismutase, J. Biol. Chem. 244, 6049–6055 (1969).

    PubMed  CAS  Google Scholar 

  15. E. D. Harris, Regulation of antioxidant enzymes, FASEB J. 6, 2675–2683 (1992).

    PubMed  CAS  Google Scholar 

  16. F. Visiolo and C. Galli, Evaluating oxidation processes in relation to cardiovascular disease: a current review of oxidant/antioxidant methodology, Nutr. Metab. Cardiovasc. Dis. 7, 459–466 (1997).

    Google Scholar 

  17. J. L. Witztum, The oxidation hypothesis of atherosclerosis, Lancet 344, 93–795 (1994).

    Article  Google Scholar 

  18. K. H. Schosinsky, H. P. Lehmann, and M. F. Beeler, Measurement of ceruloplasmin from its oxidase activity in serum by o-dianisidine dihydrochloride, Clin. Chem. 20, 1556–1563 (1974).

    PubMed  CAS  Google Scholar 

  19. A. M. Gotto, The U.S. National Cholesterol Education Program updates its adult treatment guidelines, Newslett. Int. Atherosclerosis Soc. (Winter 1993).

  20. R. E. Scully, B. U. McNeely, and E. J. Mark, Normal reference laboratory values: case records of the Massachusetts General Hospital, N. Engl. J. Med. 314, 39–49 (1986).

    Article  Google Scholar 

  21. N. F. Suttle and C. H. McMurray, Use of erythrocyte copper:zinc superoxide dismutase activity in the diagnosis of hypocuprosis in ruminants, Res. Vet. Sci. 35, 47–52 (1983).

    PubMed  CAS  Google Scholar 

  22. M. M. Parker, F. L. Humoller, and D. J. Mahler, Determination of copper and zinc in biological material, Clin. Chem. 13, 40–48 (1967).

    PubMed  CAS  Google Scholar 

  23. P. Ondrus, R. Alberty, and Z. Vassanyiova, Importance of lipid peroxidation, protective enzymes and trace elements in chronic leg ischaemia, Eur. J. Clin. Chem. Clin. Biochem. 34, 471–475 (1996).

    PubMed  CAS  Google Scholar 

  24. M. A. Dubick, G. C. Hunter, and C. L. Keen, Trace element and mineral concentrations in serum and aorta from patients with abdominal aneurysmal or occlusive disease, J. Trace Element Exp. Med. 4, 173–182 (1991).

    Google Scholar 

  25. T. Magálová, I. Beno, A. Brtková, D. Mekinová, K. Volkovová, M. Staruchová et al., Levels of Cu, Zn, Se and their relation to levels of ceruloplasmin and the activity of antioxidative enzymes, Bratisl. Lek. Listy 98, 8–11 (1997).

    PubMed  Google Scholar 

  26. G. H. Fey, G. M. Hocke, D. R. Wilson, J. A. Ripperger, T. S.-C. Juan, M.-Z. Cui et al., Cytokines and the acute phase response of the liver, in The Liver: Biology and Pathobiology, 3rd ed., I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jakoby, D. A. Schachter, and D. A. Shafritz, eds., Raven, New York, pp. 113–143 (1994).

    Google Scholar 

  27. J. M. C. Gutteridge, Antioxidant properties of ceruloplasmin towards iron- and copper-dependent oxygen radical formation, FEBS Lett. 157, 37–40 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. A. Buczyński, B. Wachowicz, K. Kędziora-Kornatowska, W. Tkaczewski, and J. Kędziora, Changes in antioxidant enzymes activities, aggregability and malonyldialdehyde concentration in blood platelets from patients with coronary heart disease, Atherosclerosis 100, 223–228 (1993).

    Article  PubMed  Google Scholar 

  29. M. Chandra, N. Chandra, R. Agarwal, A. Kumar, A. Ghatak, and V. C. Pandey, The free radical system in ischemic heart disease, Int. J. Cardiol. 43, 121–125 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. F. B. Arujo, D. S. Barbosa, C. Y. Hsin, R. C. MaranhĂo, and D. S. Abdalla, Evaluation of oxidative stress in patients with hyperlipidemia, Atherosclerosis 117, 61–71 (1995).

    Article  Google Scholar 

  31. S. S. Percival and E. D. Harris, Regulation of Cu,Zn superoxide dismutase with copper. Caeruloplasmin maintains level of functional enzyme activity during differentiation of K562 cells, Biochem. J. 274, 153–158 (1991).

    PubMed  CAS  Google Scholar 

  32. W. J. Bettger, T. J. Fish, and B. L. O’Dell, Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity, Proc. Soc. Exp. Biol. Med. 158, 279–282 (1978).

    PubMed  CAS  Google Scholar 

  33. G. Vivoli, M. Bergomi, S. Rovesti, M. Pinotti, and E. Caselgrandi, Zinc, copper, and zinc- or copper-dependent enzymes in human hypertension, Biol. Trace Element Res. 49, 97–106 (1995).

    Article  CAS  Google Scholar 

  34. C. Coudray, S. Rachidi, and A. Favier, Effect of zinc on superoxide-dependent hydroxyl radical production in vitro, Biol. Trace Element Res. 38, 273–287 (1993).

    CAS  Google Scholar 

  35. C. Coudray, F. Boucher, M. J. Richard, J. Arnaud, J. De Leiris, and A. Favier, Zinc deficiency, ethanol, and myocardial ischemia affect lipoperoxidation in rats, Biol. Trace Element Res. 30, 103–118 (1991).

    Article  CAS  Google Scholar 

  36. M. Inoue, Protective mechanism against reactive oxygen species, in The Liver: Biology and Pathobiology, 3rd ed., I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jakoby, D. A. Schachter, and D. A. Shafritz, eds., Raven, New York, pp. 443–459 (1994).

    Google Scholar 

  37. D. C. Hooper, S. Spitsin, R. B. Kean, J. M. Champion, G. M. Dickson, I. Chaudhry et al., Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis, Proc. Natl. Acad. Sci. USA 95, 675–680 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. G. G. Duthie, J. A. Beattie, J. R. Arthur, M. Franklin, P. C. Morrice, and Q. P. James, Blood antioxidants and indices of lipid peroxidation in subjects with angina pectoris, Nutrition 10, 313–316 (1994).

    PubMed  CAS  Google Scholar 

  39. L. Bergstrand, Femoral and coronary atherosclerosis in patients with hyperlipidaemia. Arteriographic findings correlated to clinical and biochemical parameters, Acta Radiol. 392 (Suppl.) 1–27 (1994).

    CAS  Google Scholar 

  40. C. Iribarren, A. R. Folsom, J. H. Eckfeldt, P. G. McGovern, and F. J. Nieto, Correlates of uric acid and its association with asymptomatic carotid atherosclerosis: the ARIC Study. Atherosclerosis Risk in Communities, Ann. Epidemiol. 6, 331–340 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iskra, M., Majewski, W. Copper and zinc concentrations and the activities of ceruloplasmin and superoxide dismutase in atherosclerosis obliterans. Biol Trace Elem Res 73, 55–65 (2000). https://doi.org/10.1385/BTER:73:1:55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:73:1:55

Index Entries

Navigation