Skip to main content
Log in

Alterations in serum and brain trace element levels after antidepressant treatment. Part II. Copper

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We have studied the effect of chronic treatment with imipramine, citalopram, and electroconvulsive shock (ECS) on serum and brain copper levels in rats. Chronic treatment with citalopram and imipramine (but not ECS) significantly (approx 14%) decreased the serum copper level. Chronic treatment with both drugs did not alter the brain copper level. However, chronic ECS induced a significant increase (by 36%) in the copper level in the hippocampus and also in the cerebellum (by 16%). In contrast to the zinc, where both pharmacologic and ECS treatment increased its hippocampal concentration, these two antidepressant therapy (drugs versus ECS) differ in their effect on brain copper level. These findings suggest that the mechanism by which copper is involved in ECS differs from that of any involvement in the action of the drugs studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. R. Frausto da Silva, and R. J. P. Williams, Copper: extracytoplasmic oxidases and matrix formation, in The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, J. J. R. Frausto da Silva and R. J. P. Williams, eds., Oxford University Press, New York, pp. 388–399 (1994).

    Google Scholar 

  2. L. Stryer, Biochemistry, W. H Freeman, New York (1995).

    Google Scholar 

  3. A. Furuta, D. L. Price, C. A. Pardo, J. C. Tronsoco, Z. S. Xu, and L. J. Martin, Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus, Am. J. Pathol. 146, 357–367 (1995).

    PubMed  CAS  Google Scholar 

  4. S. J. Fairweather-Tait, Bioavailability of copper, Eur. J. Clin. Nutr. 51(Suppl. 1), S24-S26 (1997).

    PubMed  Google Scholar 

  5. E. D. Harris, Copper transport: an overview. Proc. Soc. Exp. Biol. Med. 196, 130–140 (1991).

    PubMed  CAS  Google Scholar 

  6. B. N. Patel, and S. David, A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes, J. Biol. Chem. 272, 20,185–20,190 (1997).

    CAS  Google Scholar 

  7. M. Maes, S. Sharpe, L. van Grootel, W. Wyttenbroeck, W. Cooreman, P. Cosyns, et al., Higher a1-antitrypsin, haptoglobin, ceruloplasmin and lower retinol binding protein plasma levels during depression: further evidence for the existence of an inflammatory response during that illness, J. Affect. Disord. 24, 183–192 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. C. R. Hansen, M. Malecha, Jr., T. B. Mackenzie, and J. Kroll, Copper and zinc deficiences in association with depression and neurological findings, Biol. Psychiatry 18, 395–401 (1983).

    PubMed  Google Scholar 

  9. M. Maes, E. Vandoolaeghe, H. Neels, P. Demedts, A. Wauters, H. Y. Meltzer, et al., Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness, Biol. Psychiatry 42, 349–358 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. M. C. Linder, Nutrition and metabolism of the trace elements, in Nutritional Biochemistry and Metabolism with Clinical Applications, M. C. Linder, ed., Elsevier Science, New York, pp. 151–198 (1985).

    Google Scholar 

  11. Q. R. Smith, Regulation of metal uptake and distribution within brain, in Nutrition and the Brain, R. J. Wurtman, and J. J. Wurtman, eds., Vol. 8, pp. 25–74 (1990).

    Google Scholar 

  12. M. Schlegel-Zawadzka, M. Krośniak, and G. Nowak, Brain copper levels after antidepressant treatment, in Metal Ions in Biology and Medicine, Ph. Collery, P. Bratter, V. Negretti de Bratter, L. Khassanova, and J. C. Etienne, eds, John Libbey Eurotext, Paris, Vol. 5, pp. 703–706 (1998).

    Google Scholar 

  13. M. A. Deibel, W. D. Ehmann, and W. R. Markesbery, Copper, iron, and zinc imbalances in severity degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress, J. Neurol. Sci. 143, 137–142 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. D. A. Loeffler, P. A. LeWitt, P. L. Juneau, A. A. Sima, H. U. Nguyen, A. J. DeMaggio, et al., Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders, Brain Res. 738, 265–274 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. X. L. Yang, N. Miura, Y. Kawarada, K. Terada, K. Petrukhin, T. Gilliam, et al., Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem. J. 15(Pt. 3), 326, 897–902 (1997).

    Google Scholar 

  16. A. Crowe and E. H. Morgan, The effects of iron loading and iron deficiency on the tissue uptake of 64Cu during development in the rat, Biochim. Biophys. Acta 1291, 53–59 (1996).

    PubMed  Google Scholar 

  17. C. D. Hunt and J. P. Idso, Moderate copper deprivation during gestation and lactation affects dentate gyrus and hippocampal maturation in immature male rats, J. Nutr. 125, 2700–2710 (1995).

    PubMed  CAS  Google Scholar 

  18. N. Nakagawa, Studies on changes in trace elements of the brain related to aging (in Japanese), Hokkaido J. Med. Sci. 73, 181–199 (1998).

    PubMed  CAS  Google Scholar 

  19. D. E. Ray, Physiological factors predisposing to neurotoxicity. Arch. Toxicol. Suppl. 19 219–226 (1997).

    Google Scholar 

  20. T. Takeda, M. Kimura, K. Yokoi, and Y. Itokawa, Effect of age and dietary protein level on tissue mineral levels in female rats, Biol. Trace Element Res. 54, 55–74 (1996).

    CAS  Google Scholar 

  21. M. Vahter, E. Lutz, B. Lind, P. Herin, T. H. Bui, and I. Krakau, Concentrations of copper, zinc and selenium in brain and kidney of second trimester fetuses and infants, J. Trace Element Med. Biol. 11, 215–222 (1997).

    CAS  Google Scholar 

  22. J. Chmielnicka and M. Nasiadek, Tissue distribution and urinary excretion of essential elements in rats orally exposed to aluminium chloride, Biol. Trace Element Res. 31, 131–138 (1991).

    CAS  Google Scholar 

  23. A. Gupta and G. S. Shukla, Ontogenic profile of brain lipids following perinatal exposure to cadmium. J. Appl. Toxicol. 16, 227–233 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. J. R. Prohaska, Functions of trace elements in brain metabolism, Physiol. Rev. 67, 858–901 (1987).

    PubMed  CAS  Google Scholar 

  25. P. Perez, A. Flores, A. Santamaria, C. Rios, and S. Galvan-Arzate, Changes in transition metal contents in rat brain regions after in vivo quinolinate intrastrial administration, Arch. Med. Res. 27, 449–452 (1996).

    PubMed  CAS  Google Scholar 

  26. C. W. Levenson, Mechanisms of copper conservation in organs, Am. J. Clin. Nutr. 67(Suppl.), 978S-981S (1998).

    PubMed  CAS  Google Scholar 

  27. C. W. Levenson and M. Janghorbani, Long-term measurement of organ copper turnover in rats by continuous feeding of a stable isotope, Anal. Biochem. 221, 243–249 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. G. Nowak, and M. Schlegel-Zawadzka, Alterations in serum and brain trace elements after antidepressant treatment. Part I. Zinc, Biol. Trace Element Res. 67, 85–92 (1999).

    CAS  Google Scholar 

  29. P. Skolnick, R. T. Layer, P. Popik, G. Nowak, I. A. Paul, and R. Trullas. Adaptation of N-methyl-d-asparate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression, Pharmacopsychiatry 29, 23–26 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegel-Zawadzka, M., Nowak, G. Alterations in serum and brain trace element levels after antidepressant treatment. Part II. Copper. Biol Trace Elem Res 73, 37–45 (2000). https://doi.org/10.1385/BTER:73:1:37

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:73:1:37

Index Entries

Navigation