Skip to main content

Role of trace elements in primary arterial hypertension

Is mineral water style or prophylaxis?

An Erratum to this article was published on 01 March 2007


A negative relationship between water hardness and cardiovascular mortality rate was demonstrated and became a source of interest regarding minerals and trace metals in the pathogenesis of atherosclerosis, cardiovascular diseases, and arterial hypertension. Higher incidences of sudden death, cerebrovascular diseases, arterial hypertension, and coronary heart disease have been reported in soft water areas. A major research effort has been devoted to the problem in an attempt to find a protective factor in hard water or a detrimental factor or element in soft water. The roles of calcium, magnesium, cobalt, lithium, vanadium, silicon, manganese, and copper have been considered potentially beneficial, whereas those of cadmium, lead, silver, zinc, and antimony have been considered potentially harmful. Cobalt and zinc have been attributed both roles. In the present article, the role of trace quantities of several elements in mineral water in the etiopathogenesis of primary arterial hypertension is reviewed.

This is a preview of subscription content, access via your institution.


  1. G. W. Comstock, Water hardness and cardiovascular diseases, Am. J. Epidemiol. 110, 375–400 (1979).

    PubMed  CAS  Google Scholar 

  2. J. Genest, O. Kuchel, P. Hamet, and M. Cantin, Hypertension, McGraw-Hill, New York (1983).

    Google Scholar 

  3. D. R. Peterson, D. J. Thompson, and J. N. Nam, Water hardness, arteriosclerotic heart disease and sudden death, Am. J. Epidemiol. 92, 90–93 (1970).

    PubMed  CAS  Google Scholar 

  4. H. A. Schroeder, The role of trace elements in cardiovascular diseases, Med. Clin. North Am. 58, 381–196 (1974).

    PubMed  CAS  Google Scholar 

  5. H. A. Schroeder and L. A. Kriemer, Cardiovascular mortality, municipal water and corrosion, Arch. Environ. Health 28, 303–311 (1974).

    PubMed  CAS  Google Scholar 

  6. W. R. Harlan, J. R. Landis, R. L. Schmouder, N. G. Goldstein, and L. C. Harlan, Blood lead and blood pressure, JAMA 253, 530–534 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. T. Oshima and E. W. Young, Systemic and cellular calcium metabolism and hypertension, Semin. Nephrol. 15, 496–503 (1995).

    PubMed  CAS  Google Scholar 

  8. P. Saltman, Trace elements and blood pressure, Ann. Intern. Med. 98, 823–827 (1983).

    PubMed  CAS  Google Scholar 

  9. N. V. Davydenko, I. P. Smirnova, E. A. Kvasha, I. M. Gorbas, and A. V. Koblianskaia, Interrelationships between dietary intake of minerals and prevalence of hypertension, Vopr. Pitan. 6, 17–19 (1995).

    PubMed  Google Scholar 

  10. N. V. Davydenko, I. P. Smirnova, E. A. Kvasha, and I. M. Gorbas, The relationship between the cooper and zinc intake with food and the prevalence of ischemic heart disease and its risk factors, Lik. Sprava 5–6, 73–77 (1995).

    PubMed  Google Scholar 

  11. J. Staessen, F. Sartor, and H. Roels, The association between blood pressure, calcium and other divalent cations: a population study, J. Hum. Hypertens. 5, 485–494 (1991).

    PubMed  CAS  Google Scholar 

  12. S. Tubek, Znaczenie cynku w regulacji ciœnienia têtniczego i etiopatogenezie nadciœnienia, Post. Med. Klin. Doœw 3, 411–415 (1994) (in Polish).

    Google Scholar 

  13. E. K. Gilbert D'Angelo, H. A. Singer, and C. M. Rembold, Magnesium relaxes arterial smooth muscle by decreasing intracellular Ca++ without changing intracellular Mg++, J. Clin. Invest. 89, 1988–1994 (1992).

    Article  Google Scholar 

  14. J. Durlach, Magnez w Praktyce Klinicznej, PZWL, Warszawa, (1991) (in Polish).

    Google Scholar 

  15. S. Ripa and R. Ripa, Zinc and arterial pressure, Minerva Med. 85, 455–459 (1994).

    PubMed  CAS  Google Scholar 

  16. H. Dalheim, C. L. White, and J. Rothemund, Effect of zinc depletion on angiotensin I-converting enzyme in arterial walls and plasma of the rat, Miner. Electrolyte Metab. 15, 125–128 (1989).

    Google Scholar 

  17. J. Cortijo, J. V. Espligues, and B. Serria, Zinc as a calcium antagonist; a pharmacological approach in strips of rat aorta, IRCS Med. Sci. Cancer 13, 292–293 (1985).

    CAS  Google Scholar 

  18. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73, 79 (1993).

    PubMed  CAS  Google Scholar 

  19. D. Kromhout, A. A. E. Wibowo, and R. F. M. Herber, Trace metals and coronary heart disease risk indicators in 152 elderly men (The Zutphen Study), Am. J. Epidemiol. 122, 378–385 (1985).

    PubMed  CAS  Google Scholar 

  20. J. Guillemant, H.-T. Le, C. Accarie, et al., Mineral water as source of dietary calcium: acute effects on parathyroid function and bone resorption in young men, Am. J. Clin. Nutr. 71, 999–1002 (2000).

    PubMed  CAS  Google Scholar 

  21. J. Thomas, J-M. Millot, S. Sebille, et al., Free and total magnesium in lymphocytes of migraine patients. Effect of magnesium-rich mineral water intake, Clin. Chim. Acta 295, 63–75 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. R. Rylander and M. J. Arnaud, Mineral water intake reduces blood pressure among subjects with low urinary magnesium and calcium levels, BMC Public Health 4, 56–63 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

An erratum to this article is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tubek, S. Role of trace elements in primary arterial hypertension. Biol Trace Elem Res 114, 1–5 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Index Entries