Skip to main content

Longitudinal study of serum zinc and copper levels in hemodialysis patients and their relation to biochemical markers

Abstract

A 6-mo longitudinal study of 48 hemodialysis patients (HPs) with chronic renal failure was performed. Three blood samplings were done. Samples of whole blood from each patient were collected during hemodialysis sessions after passing through the artificial kidney. Zinc and copper levels were measured by atomic absorption spectrometry. Additionally, 36 biochemical indexes were evaluated during the study. Fifty-two healthy matched controls were also considered. Mean serum zinc and copper concentrations in HPs were significantly decreased (Zn) and increased (Cu), when compared with healthy controls (p<0.01). Zinc concentrations found in the first and second blood samplings from patients were significantly lower than those measured for the third sampling (p<0.01). The etiology of chronic renal failure influenced the statistically serum Zn levels of patients (p<0.05). Serum copper levels of HPs were significantly diminished by the existence of secondary associated diseases (p<0.01). Uric acid and parathyroid hormone, and total-cholesterol and glutamic-pyruvic-transaminase levels were significantly (p<0.05) and linearly related with serum zinc and copper concentrations, respectively. From all of indexes, creatinine, direct bilirubin, magnesium, calcium, parathyroid hormone, transferrin, and albumin were statistically modified along the longitudinal study (p<0.05). Transferrin serum levels were significantly diminished in the third blood sampling, indicating the tendency toward anemia in the patients. This result is reinforced by low levels of biochemical and hematological indexes related with iron body staus.

This is a preview of subscription content, access via your institution.

References

  1. D. Konukoglu, M. Ercan, M. Ayaz, and S. Onen, Plasma and erythrocytes antioxidant status and trace element levels in proteinuric patients with moderate glomerular function. J. Trace Elements Med. Biol. 15, 119–122 (2001).

    Article  CAS  Google Scholar 

  2. J. Borawski, K. Pawlak, B. Naumnik, and M. Mysliwiec, Relations between oxidative stress, hepatocyte growth factor, and liver disease in hemodialysis patients. Renal Failure 24, 825–837 (2002).

    PubMed  Article  CAS  Google Scholar 

  3. Y. M. Song and M. D. Chen, Relative reduced plasma zinc concentration in middleaged but not elderly adults in Taiwan. Biol. Trace Element Res. 103, 97–102 (2005).

    Article  CAS  Google Scholar 

  4. P. Ar bal Kocatürk, G. ÖzelÇi Kavas, Ö. Erdeve, and Z. S. Kiar, Superoxide dismutase activity and zinc and copper concentrations in growth retardation. Biol. Trace Element Res. 102, 1–3 (2004).

    Article  Google Scholar 

  5. C. Terres-Martos, M. Navarro-Alarcon, F. Martin-Lagos, H. Lopez-Ga de la Serrana, V. Perez-Valero, and M. C. Lopez-Martinez, Serum zinc and copper concentrations and Cu/Zn ratios in patients with hepatopathies or diabetes. J. Trace Elements Med. Biol. 12, 44–49 (1998).

    CAS  Google Scholar 

  6. J. Bober, E. Kwiatkowska, K. Ciechanowski, et al., Do trace elements modify the activity of erythrocyte sodium-proton exchanger in hemodialyzed patients? Biol. Trace Element Res. 104, 107–120 (2005).

    Article  CAS  Google Scholar 

  7. M. Bonomini, P. F. Palmerieri, M. Evangelista, V. Manfrini, and A. Albertazzi, Zinc-mediated lymphocyte energy charge modification in dialysis patients. Assaio. Trans. 37, 387–389 (1991).

    Google Scholar 

  8. K. H. Shu, Y. S. Lu, C. H. Chen, C. C. De Chen, S. H. Heces, and J. D. Lian, Lymphocyte proliferation in uremic patients: correlation with zinc status, J. Formos. Med. Assoc. 92, 1017–1020 (1993).

    PubMed  CAS  Google Scholar 

  9. S. Turk, S. Bozfakioglu, S. T. De Ecder, et al., Effects of the zinc supplementation in the immune system and in the response to the polyvalent vaccine of the influenza in haemodialysis patients, Int. J. Artif. Organs 21, 274–278 (1998).

    PubMed  CAS  Google Scholar 

  10. A. Matson, M. Wright, A. Oliver, et al., Zinc supplementation at conventional doses does not improve the disturbance of taste perception in hemodialysis patients, Renal Nutr. 13, 224–228 (2003).

    Article  Google Scholar 

  11. M. F. Chen, C. L. Chang, and S. Y. Liou, Increase in resting levels of superoxide anion in the whole blood patients on chronic hemodialysis, Blood Purif. 16, 290–300 (1998).

    PubMed  Article  CAS  Google Scholar 

  12. D. B. Milne DB, C. D. Davis, and F. H. Nielsen, Low dietary zinc alters indices of copper function and status in postmenopausal women, Nutrition 17, 701–708 (2001).

    PubMed  Article  Google Scholar 

  13. E. D. Harris, Zinc and copper: evidence for interdependence, not antagonism, Nutrition 17, 734 (2001).

    PubMed  Article  CAS  Google Scholar 

  14. M. M. Berger, A. Shenkin, J. P. Revelly, et al., Copper, selenium, zinc and thiamine balance continuous venovenous hemodiafiltration in critically ill patients, Am. J. Clin. Nutr. 80, 410–416 (2004).

    PubMed  CAS  Google Scholar 

  15. F. Martín-Lagos, M. Navarro-Alarcón, C. Terrés-Martos, H. López-Ga de la Serrana, and M. C. López, Serum zinc levels in healthy subjects from Southeastern Spain, Biol. Trace Element Res. 61, 51–60 (1998).

    Google Scholar 

  16. F. Martín-Lagos, M. Navarro-Alarcón, C. Terrés-Martos, H. López-Ga de la Serrana, V. Pérez-Valero, and M. C. López, Zinc and copper concentrations in serum from Spanish women during pregnancy, Biol. Trace Element Res. 61, 61–70 (1998).

    Google Scholar 

  17. C. Terres-Martos, M. Navarro-Alarcon, F. Martin-Logos, H. Lopez-Ga de la Serrana, and M. C. Lopez-Martinez, Determination of copper levels in serum of healthy subjects by atomic absorption spectrometry, Sci. Total Environ. 198, 97–103 (1997).

    PubMed  Article  CAS  Google Scholar 

  18. S. K. Mahajan, E. M. De Bowersox, D. L. Centeno, et al., Factors underlying abnormal zinc metabolism in uremia. Kidney Int. 268, 269–273 (1989).

    Google Scholar 

  19. K. Y. Hung, C. Y. Ho, Y. M. Kuo, et al., Trace elements burden in geriatric hemodialysis patients: a prosective multicentre collaborative study, Int J. Artif. Organs 20, 553–556 (1997).

    PubMed  CAS  Google Scholar 

  20. S. J. Hwang, J. M. Chang, S. L. Lee, J. H. Tsai, and Y. H. Lai, Short and long term uses of calcium acetate do not change hair and serum zinc concentrations in hemodialysis patients, Scand. J. Clin. Lab. Invest. 59, 83–87 (1999).

    PubMed  Article  CAS  Google Scholar 

  21. J. W. Huang, K. Y. Hung, S. H. Lee, et al., Trace elements in blood and dialysate among continuous ambulatory peritoneal dialysis patients: a prospective, multicenter collaborative study, Dialysis Transplant. 29, 62 (2000).

    Google Scholar 

  22. M. E. Yilmaz, M. Kiraz, and I. H. Kara, The evaluation of serum zinc and copper levels in hemodialysis patients in souhteast Turkey, Dialysis Transplant. 29, 718 (2000).

    Google Scholar 

  23. K. Kalantas-Zadeh and J. D. Kopple, Trace elements and vitamins in maintenance dialysis patients, Adv. Renal Replace. Ther. 10, 170–182 (2003).

    Google Scholar 

  24. R. C. Ribeiro, V. S. Sales, F. de A. Neves, S. Draibe, and J. Brandao-Neto, Effects of zinc on cell-mediated immunity in chronic hemodialysis patients, Biol. Trace Element Res. 98, 209–218 (2004).

    Article  CAS  Google Scholar 

  25. K. Sriram and G. Abraham, Loss of zinc and selenium does not occur trough peritoneal dialysis, Nutrition 16, 1047–1051 (2000).

    PubMed  Article  CAS  Google Scholar 

  26. J. D. Bogden, E. Zadzielski, B. Weiner, J. M. Oleske, and A. Aviv, Release of some trace metals from disposable coils during hemodialysis, Am. J. Clin. Nutr. 36, 403–409 (1982).

    PubMed  CAS  Google Scholar 

  27. L. M. Blendis, M. Ampil, D. R. Wilson, et al., The importance of dietary protein in the zinc deficiency of uremia, Am. J. Clin. Nutr. 34, 2658–2661 (1981).

    PubMed  CAS  Google Scholar 

  28. D. Van Renterghem, R. Cornelis, L. Mees, and R. Vanholder, The effect of adding Br or Zn supplements to the dialysate on the concentrations of Br and Zn in the blood of hemodialysis patients, J. Trace Elements Electrolyte Health Dis. 6, 105–109 (1992).

    Google Scholar 

  29. S. Komindr, J. Thirawitayakom, S. Taechangam, O. Puchaiwatananon, S. Songchisomboon, and S. Domrongkitchaiporn, Nutritional status in chronic hemodialysis patients, Biomed. Environ. Sci. 9, 256–262 (1996).

    PubMed  CAS  Google Scholar 

  30. T. Zima, V. Tesar, O. Mestek, and K. Nemecek, Trace elements in end-stage renal disease. Clinical implication of trace elements, Blood Purif. 17, 187–198 (1999).

    PubMed  Article  CAS  Google Scholar 

  31. O. Hosokawa and O. Yoshida, Effects of erythropoietin on trace elements in patients with chronic renal failure undergoing hemodialysis, Nephron 65, 414–417 (1993).

    PubMed  CAS  Google Scholar 

  32. S. Da Cunha, F. Manes Albanesi Filho, D. Senra Antelo, and M. Miranda de Souza, Serum sample levels of selenium and copper in healthy volunteers living in Rio de Janeiro, Sci. Total Environ. 301, 51–54 (2003).

    PubMed  Article  Google Scholar 

  33. J. H. Sondheirmer, S. K. Mahajan, D. L. Centeno, et al., Elevated plasma copper in chronic renal failure, Am. J. Clin. Nutr. 47, 896–899 (1988).

    Google Scholar 

  34. C. Agenet C. Brugere, and J. P. Reynier, Plasma and intraerythrocytic concentrations of copper and zinc in uremic patients treated by periodic hemodialysis, Ann. Biol. Clin. 47, 493–496 (1989).

    CAS  Google Scholar 

  35. B. Kaminska-Galwas, W. Grzeszczak, A. Jedryczko, and J. L. Pachelski, Levels of Zn, Cu, Ni and Se in the serum of treated haemoldilysis patients. Influence of the therapy with erythropoyetin, Pol. Arch. Med. Wewn. 89, 368–376 (1993).

    PubMed  CAS  Google Scholar 

  36. N. J. Emenaker, R. A. Disilvestro, N. S. Nahman, and S. Percival, Copper-related blood indexes in kidney dialysis patients, Am. J. Clin. Nutr. 64, 757–760 (1996).

    PubMed  CAS  Google Scholar 

  37. L. Locsey and L. Papp, Study of trace elements in patients on haemodialysis, Int. Urol. Nephrol. 15, 289–295 (1983).

    PubMed  Article  CAS  Google Scholar 

  38. S. Hosokawa, H. Nishitani, T. Imai, T. Nishio, T. Tomoyoshi, and K. Sawanishi, Copper and zinc changes in chronic haemodialysis patients, Trasplant. Assoc. Eur. Renal Assoc. 21, 247–250 (1985).

    CAS  Google Scholar 

  39. T. Zima, O. Mestek, M. Nemecek, et al., Trace elements in hemodialysis and continuous ambulatory peritoneal dialysis patients, Blood Purif. 16, 253–260 (1988).

    Article  Google Scholar 

  40. M. Navarro and R. J. Wood, Plasma changes in micronutrients following a multivitamin and mineral supplement in healthy adults, J. Am. Coll. Nutr. 22, 124–132 (2003).

    PubMed  CAS  Google Scholar 

  41. C. Gamez, M. D. Ruiz-Lopez, R. Artacho, M. Navarro, A. Puerta, and C. Lopez, Serum selenium in institutionalized elderly subjects and relation to other nutritional markers, Clin. Chem. 43, 693–694 (1997).

    PubMed  CAS  Google Scholar 

  42. P. A. Lopes, M. C. Santos, L. Vicente, et al., Trace element status (Se, Cu, Zn) in healthy portuguese subjects of Lisbon population: a reference study. Biol. Trace Element Res. 101, 1–18 (2004).

    Article  CAS  Google Scholar 

  43. S. Okuyama, H. Mishina, K. Hasegawa, N. Nakano, and K. Ise, Probable atherogenic role of zinc and copper as studied in chronic hemodialysis patients, Tohoku J. Exp. Med. 138, 227–229 (1982).

    PubMed  CAS  Article  Google Scholar 

  44. J. McEnemy, C. M. Loughrey, P. T. McNamee, E. R. Trimble, and I. S. Young, Susceptibility of VLDL to oxidation in patients on regular haemodialysis, Atherosclerosis 21, 215–220 (1997).

    Article  Google Scholar 

  45. A. Igel-Korcagova, P. Raab, K. A. Brensing, et al., Cholesterol metabolism in patients with chronic renal failire on hemodialysis, J. Nephrol. 16, 850–854 (2003).

    PubMed  CAS  Google Scholar 

  46. R. D. Rohn, P. Pleban, and L. L. Jenkins, Magnesium, zinc, and cooper in plasma and blood cellular components in children with IDDM, Clin. Chim. Acta 215, 21–28 (1993).

    PubMed  Article  CAS  Google Scholar 

  47. G. Aalbers and J. P. W. Houtman, Relationships between trace elements and atherosclerosis, Sci. Tot. Environ. 43, 255–283 (1985).

    Article  CAS  Google Scholar 

  48. I. I. Dementeva, M. I. Anchianova, S. L. Dzemesh Kevich, A. G. Iavorouskii, and L. S. Lokslin, Changes in the content of microelements: copper, zinc and iron in the blood of patients following cardiopulmonary bypass, Anesteziol. Reanimatol. 4, 50–53 (1993).

    PubMed  Google Scholar 

  49. V. Panichi, D. Taccola, G. M. Rizza, et al., Ceruloplasmin and acute phase protein levels are associated with cardiovascular disease in chronic dialysis patients, J. Nephrol. 17, 715–720 (2004).

    PubMed  CAS  Google Scholar 

  50. Z. Tang, Y. Wu, Q. W. Wang, et al., Clinical spectrum of diffuse crescentic glomerulonephritis in Chinese patients, Chin. Med. J. 116, 1737–1740 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Navarro-Alarcon, M., Reyes-Pérez, A., Lopez-Garcia, H. et al. Longitudinal study of serum zinc and copper levels in hemodialysis patients and their relation to biochemical markers. Biol Trace Elem Res 113, 209–222 (2006). https://doi.org/10.1385/BTER:113:3:209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:113:3:209

Index Entries

  • Zinc
  • copper
  • longitudinal study
  • hemodialysis patients
  • biochemical markers