Skip to main content
Log in

Effect of lanthanum ions (La3+) on ferritin-regulated antioxidant process under PEG stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The physiological effects of lanthanum (III) ions on the ferritin-regulated antioxidant process were studied in wheat (Triticum aestivum L.) seedlings under polyethylene glycol (PEG) stress. Treatment with 0.1 mM La3+ resulted in increased levels of chlorophyll, carotenoid, proline, ascorbate, and reduced glutathione. The activities of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and peroxidase were also increased after La3+ treatment. Treatment with La3+ seems to enhance the capacity of the reactive oxygen species scavenging system, affect the Fe2+ and Fe3+ electron-transfer process in ferritin, and restrain the formation of hydroxyl radical (OH), alleviating the oxidative damage induced by PEG stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Briat and S. Lobreaux, Iron transport and storage in plants, Trends Plant Sci. 2(5), 187–193 (1997).

    Article  Google Scholar 

  2. J. P. Laulhere, A. M. Lescure, and J. F. Briat, Purification and characterization of ferritins from maize, pea and soyabean seeds. Distribution in various pea organs, J. Biol. Chem. 263, 10,289–10,294 (1988).

    CAS  Google Scholar 

  3. P. Aisen and I. Listowsky, Iron transport and storage proteins, Annu. Rev. Biochem. 49, 357–393 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. A. H. Fitter and R. K. Hay, Environmental Physiology of Plants, Academic London (1989).

    Google Scholar 

  5. H. F. Bienfait, Prevention of stress in iron metabolisms of plants, Acta. Bot. Neerl. 38, 105–129 (1989).

    CAS  Google Scholar 

  6. X. X. Peng and M. Yamauchi, Ethylene production in rice bronzing leaves induced by ferrous iron, Plant Soil 149, 227–234 (1993).

    Article  CAS  Google Scholar 

  7. J. F. Briat, Metal ion-activated oxidative stress and its control, in Oxidative Stress in Plants, D. Inzé and Van M. Montagu, eds., Taylor& Francis, London, pp 171–190 (2002).

    Google Scholar 

  8. D. A. Dalton, S. A. Russell, F. J. Hanus, G. A. Pascoe, and H. J. Evans, Enzymatic reactions of ascorbate and glutathione that prevent damage in soybean root nodules, Proc. Natl. Acad. Sci. (USA) 83, 3811–3815 (1986).

    Article  CAS  Google Scholar 

  9. B. Halliwell and J. M. C. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186, 1–85 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. D. M. Miller and S. D. Aust, Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation, Arch. Biochem. Biophys. 271, 113–119 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. A. D. Dodge, Some mechanisms of herbicide action, Sci. Prog. (Oxford) 62, 447–466 (1975).

    CAS  Google Scholar 

  12. J. F. Briat, Roles of ferritin in plants, J. Plant Nutr. 19, 1331–1342 (1996).

    CAS  Google Scholar 

  13. J. P. Laulhere, A. M. Laboure, and J. F. Briat, Mechanism of the transition from plant ferritin to phytosiderin, J. Biol. Chem. 264, 3629–3635 (1989).

    PubMed  CAS  Google Scholar 

  14. R. R. Crichton, Y. Ponce-Ortiz, M. H. J. Koch, R. Parfait, and H. B. Stuhrmann, Isolation and characterization of phytoferritin from pea (Pisum sativum) and lentil (Lens esculenta), Biochem. J. 171, 349–356 (1978).

    PubMed  CAS  Google Scholar 

  15. A. Korcz and T. Twardowski, The effect of selected heavy metal ions on the in vitro translation system of wheat germ-protective function of plant ferritin, Acta Physiol. Plant 14, 185–190 (1992).

    CAS  Google Scholar 

  16. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. C. N. Giannopolitis and S. K. Ries, Superoxide dismutase. I. Occurrence in higher plants, Plant Physiol. 59, 309–314 (1977).

    PubMed  CAS  Google Scholar 

  18. R. F. Beers, Jr. and I. W. Sizer, A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase, J. Biol. Chem. 195(1), 133–140 (1952).

    PubMed  CAS  Google Scholar 

  19. Y. Nakano and K. Asada, Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol. 22, 867–880 (1981).

    CAS  Google Scholar 

  20. M. A. Hossain, Y. Nakano, and K. Asada, Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide, Plant Cell Physiol. 25, 385–395 (1984).

    CAS  Google Scholar 

  21. M. A. Hossain and K. Asada, Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme, Plant Cell Physiol. 25, 85–92 (1984).

    CAS  Google Scholar 

  22. M._Schaedle and J. A. Bassham, Chloroplast glutathione reductase, Plant Physiol. 59, 1011–1012 (1977).

    PubMed  CAS  Google Scholar 

  23. R. Reuveni, M. Shimoni, Z. Karchi, and J. Kuc, Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumis melo) against Pseudoperonospora cubensis, Phytopathology 82, 749–753 (1992).

    CAS  Google Scholar 

  24. D. Arnon, Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris, Plant Physiol. 24, 1–15 (1949).

    Article  PubMed  CAS  Google Scholar 

  25. N. Arakawa, K. Tsutsumi, N. G. Sanceda, T. Kurata, and C. Inagaki, A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10 phenanthroline, Agric. Biol. Chem. 45, 1289–1290 (1981).

    CAS  Google Scholar 

  26. S. Nakagawara and S. Sagisaka, Increase in enzyme activities related to ascorbate metabolism during cold acclimation of poplar twigs, Plant Cell Physiol. 25, 899–906 (1984).

    CAS  Google Scholar 

  27. A. Guri, Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone, Can. J. Plant Sci. 63, 733–737 (1983).

    Article  CAS  Google Scholar 

  28. R. L. Heath and L. Packer, Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys 125, 189–198 (1968).

    Article  PubMed  CAS  Google Scholar 

  29. L. S. Bates, R. P. Waldren, and I. D. Teare, Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).

    Article  CAS  Google Scholar 

  30. U. K. Laemmli, Cleage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  31. F. L. Zeng, Y. An, H. T. Zhang, and M. F. Zhang, The effects of La(III) on the peroxidation of membrane lipids in wheat seedling leaves under osmotic stress, Biol. Trace Element Res. 69(2), 141–150 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Yang, T., Gao, Y. et al. Effect of lanthanum ions (La3+) on ferritin-regulated antioxidant process under PEG stress. Biol Trace Elem Res 113, 193–208 (2006). https://doi.org/10.1385/BTER:113:2:193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:113:2:193

Index Entries

Navigation