Skip to main content
Log in

Exogenous zinc improves blood fluidity but has no effect on the mechanisms of vascular response to acetylcholine iontophoresis in humans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Recent findings in cellular signaling function of zinc through the mobilization intracellular calcium or by inducing ATP release suggest that extracellular zinc plays an important role in many physiological functions. However, such an extracellular signaling action of zinc for most cells is not known. Therefore, we investigated whether zinc plays any role in endothe-lium-dependent acetylcholine (ACh)-induced vasodilatation in microvascular beds. Transdermal iontophoresis was used to transport ACh through the forearm skin and cutaneous perfusion was measured using a laser Doppler flowmeter (LDF). Experiments were repeated using (1) zinc instead of ACh to test the effect of zinc ions alone and (2) concomitant iontophoresis of ACh and zinc to explore the effect of zinc on ACh-induced vasodilatation. Although zinc augments blood flow, curve-fitting to LDF signals indicate that zinc has no effect on the neural and endothelial component of ACh-induced vasodilatation. Additionally, no effect of Zn2+ on blood flow was found during its iontophoresis alone. Therefore, it is suggested from the Fourier analysis of LDF signals that the Zn+ might influence blood fluidity by its action on red blood cells deformability/aggregability during a high-blood-flow condition, which might, in turn, decrease blood viscosity and improve blood flow in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73, 79–118 (1993).

    PubMed  CAS  Google Scholar 

  2. W. Maret, Zinc biochemistry, physiology, and homeostasis-recent insights and current trends, BioMetals 14, 187–190 (2001).

    Article  CAS  Google Scholar 

  3. C. E. Outten and T. V. O'Halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis, Science 292, 2488–2492 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. T. J. B. Simons, Intracellular free zinc and zinc buffering in human red blood cells, J. Membr. Biol. 123, 63–71 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. G. R. Magneson, J. M. Puvathingal, and W. J. Ray, Jr., The concentrations of free Mg2+ and free Zn2+ in equine blood plasma, J. Biol. Chem. 262, 1140–1148 (1987).

    Google Scholar 

  6. M. Hershfinkel, A. Moran, N. Grossman, and I. Sekler, A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport, Proc. Natl. Acad. Sci. USA 98, 11,749–11,754 (2001).

    Article  CAS  Google Scholar 

  7. H. Azriel-Tamir, H. Sharir, B. Schwartz, and M. Hershfinkel, Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by zinc sensing receptor, J. Biol. Chem. 279, 51,804–51,816 (2004).

    Article  CAS  Google Scholar 

  8. H. Sharir, and M. Hershfinkel, The extracellular zinc-sensing receptor mediates inter-cellular communication by inducing ATP release, Biochem. Biophys. Res. Commun. 332, 845–852 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. W. Maret, Crosstalk of the group IIa and IIb metals calcium and zinc in cellular signaling, Proc. Natl. Acad. Sci. USA 98, 12,325–12,327 (2001).

    Article  CAS  Google Scholar 

  10. R. A. Colvin, N. Davis, R. W. Nipper, and P. A. Carter, Zinc transport in the brain: routes of zinc influx and efflux in neurons, J. Nutr. 130, 1484S-1487S (2000).

    PubMed  CAS  Google Scholar 

  11. C. J. Frederickson, and A. I. Bush, Synaptically released zinc: physiological functions and pathological effects, BioMetals 14, 353–366 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. H. M. Lehmann, B. B. Brothwell, L. P. Volak, and D. J. Bobilya, Zinc status influences zinc transport by porcine brain capillary endothelial cells, J. Nutr. 132, 2763–2768 (2002).

    PubMed  CAS  Google Scholar 

  13. D. Beyersmann, and H. Haase, Function of zinc in signaling, proliferation and differentiation of mammalian cells, BioMetals 12, 62–67 (2001).

    Google Scholar 

  14. C. J. Frederickson, J.-Y. Koh, and A. Bush, The neurobiology of zinc in health and disease, Nature Rev. Neurosci. 6, 449–462 (2005).

    Article  CAS  Google Scholar 

  15. W. Maret, The function of zinc metallothionein, a link between cellular zinc and redox state, J. Nutr. 130, 1455S-1458S (2000).

    PubMed  CAS  Google Scholar 

  16. C. T. Aravindakumar, J. Ceulemans, and M. De Ley, Nitric oxide induces Zn2+ release from metallothionein by destroying zinc-sulfur clusters without concomitant formation of S-nitrosothiol, Biochem. J. 344, 253–258 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. K. Zangger, G. Oz, E. Haslinger, O. Kunert, and I. M. Armitage, Nitric oxide selectively releases metals from the N terminal domain of metallothioneins, potential role at inflammatory sites, FASEB J. 15, 1303–1305 (2001).

    PubMed  CAS  Google Scholar 

  18. L. L. Pearce, K. Wasserloos, C. M. St Croix, R. Gandley, E. S. Levitan, and B. R. Pitt, Metallothionein, nitric oxide and zinc homeostasis in vascular endothelial cells, J. Nutr. 130, 1467S-1470S (2000).

    PubMed  CAS  Google Scholar 

  19. R. D. Palmiter, The elusive function of metallothioneins, Proc Natl. Acad. Sci. USA 89, 6333–6337 (1998).

    Article  Google Scholar 

  20. R. S. Chung, and A. K. West. A role for extracellular metallothioneins in cns injury and repair. Neuroscience 123, 595–599 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. S. Khaled, J. F. Brun, G. Cassanas, L. Bardet, and A. Orsetti, Effects of zinc supplementation on blood rheology during exercise, Clin. Hemorheol. Microcirc. 20, 1–10 (1999).

    PubMed  CAS  Google Scholar 

  22. B. L. O'Dell, Role of zinc in plasma membrane function, J. Nutr. 130, 1432S-1436S (2000).

    PubMed  Google Scholar 

  23. J. F. Brun, Hormones, metabolism and body composition as major determinants of blood rheology: potential pathophysiological meaning, Clin. Hemorheol. Microcirc. 26 (2), 63–79 (2002).

    PubMed  CAS  Google Scholar 

  24. M. D. Chen, Y. M. Song, and P. Y. Lin, Zinc may be a mediator of leptin production in humans, Life Sci. 66 (22), 2143–2149 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. M. D. Lifschitz, and R. I. Henkin, Circadian variation in copper and zinc in man, J. Appl. Physiol. 31(1), 88–92 (1971).

    PubMed  CAS  Google Scholar 

  26. F. Y. Özbebit, F. Esen, S. Güleç, and H. Esen, Evaluation of forearm microvascular blood flow regulation by laser Doppler flowmetry, iontophoresis, and curve analysis: contribution of axon reflex, Microvasc. Res. 67, 207–214 (2004).

    Article  PubMed  Google Scholar 

  27. M. Hambidge, Biomarkers of trace mineral intake and status, J. Nutr. 133, 948S-955S (2003).

    PubMed  CAS  Google Scholar 

  28. M. Grossmann, M. J. Jamieson, D. L. Kellogg, Jr., et al., The effect of iontophoresis on the cutaneous vasculature: evidence for current induced hyperemia, Microvasc. Res. 50, 444–452 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. A. Stefanovska, M. Bracic, and K. Kvernmo, Wavelett analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique, IEEE Trans. Biomed. Eng. 46, 1230–1239 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. R. D. Bauer, R. Busse, and E. Wetterer, Biomechanics of the cardiovascular system, in Biophysics, W. Hoppe, W. Lohmann, H. Markl, and H. Ziegler eds., Springer-Verlag, Berlin, pp. 618–630 (1983).

    Google Scholar 

  31. E. Witzleb, Functions of the vascular system, in Human physiology, R. F. Schmidt and G. Thews, eds., Springer-Verlag, Berlin, pp. 480–541 (1989).

    Google Scholar 

  32. A. H. Cromer, Physics for the Life Sciences, McGraw-Hill, New York (1977).

    Google Scholar 

  33. M. Berghoff, M. Kathpal, S. Kilo, M. J. Hilz, and R. Freeman, Vascular and neural mechanisms of ACh-mediated vasodilation in the forearm cutaneous microcirculation, J. Appl. Physiol. 92, 780–788 (2002).

    PubMed  CAS  Google Scholar 

  34. P. Boutsiouki, S. Georgiou, and G. F. Clough, Recovery of nitric oxide from acetylcholine-mediated vasodilation in human skin in vivo, Microcirculation 11, 249–259 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. S. Durand, M. Tartas, P. Bouyé, A. Koïtka, J. L. Saumet, and P. Abraham. Prostaglandins participate in the late phase of the vascular response to acetylcholine iontophoresis in humans, J. Physiol. 561(3), 811–819 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. G. Öner, I. Bilgen, M. Edremitlioglu, Z. Alkan, and S. Cirrik, Dietary zinc modifies the characteristics of endothelial dilation in normozincemic rats, Biol. Trace Element Res. 92(2), 123–138 (2003).

    Article  Google Scholar 

  37. H. Izumi, H. Mori, T. Uchiyama, et al., Sensitization of nociceptive C-fibers in zinc-deficient rats, Am. J. Physiol. (Regul. Integ. Comp. Physiol.), 37, 268, R1423-R1428 (1995).

    Google Scholar 

  38. O. K. Baskurt, and H. Meiselman, Blood rheology and hemodynamics, Semin. Thromb. Hemost. 29(5), 435–450 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. K. Elherik, F. Khan, M. McLaren, and G. Kennedy, Circadian variation in vascular tone and endothelial cell function in normal males, Clin. Sci. 102, 547–552 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esen, F., Güleç, S. & Esen, H. Exogenous zinc improves blood fluidity but has no effect on the mechanisms of vascular response to acetylcholine iontophoresis in humans. Biol Trace Elem Res 113, 139–153 (2006). https://doi.org/10.1385/BTER:113:2:139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:113:2:139

Index Entries

Navigation