Skip to main content
Log in

Maternal-fetal status of copper, iron, molybdenum, selenium, and zinc in obese pregnant women in late gestation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Obesity is well known to be a contributory risk factor for several disease states, including diabetes mellitus. Further, obese women are more prone to have babies born with congenital abnormalities. Paucity of data on maternal-fetal disposition of essential trace elements in obese pregnancies prompted us to undertake this study. Maternal venous and umbilical arterial and venous samples were collected from obese patients (body mass index >30) and control pregnant women (body mass index <25) at time of spontaneous delivery or cesarean sections and concentrations of essential trace elements such as Cu, Fe, Mo, Se, and Zn determined in various samples by atomic absorption spectrophotometry. Activities of antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and total antioxidant activity in maternal and umbilical blood were assessed using appropriate reagent kits. Maternal-fetal disposition and exchange parameters of elements studied were assessed using established critieria. Concentrations of Cu, Fe, Mo, Se, and Zn in the serum of control pregnant women at time of delivery averaged 2232.6, 2398.1, 10.9, 108.9, and 661.9 μg/L, respectively, whereas in the obese group, the values of the above elements averaged 2150.3, 2446.8, 12.6, 96.8, and 838.9 μg/L, respectively. Umbilical vein/maternal vein ratios of Cu, Fe, Mo, Se, and Zn in the control group averaged 0.29, 1.93, 1.06, 0.76, and 1.12, respectively, whereas in the obese group, their fetal-maternal ratios averaged 0.32, 2.23, 1.06, 0.78, and 1.53, respectively. The Cu:Zn ratio in the maternal vein of the obese group (3.60±0.20) was significantly lower (Student's t-test; p<0.05) than that of the controls (2.50±0.19); however, Cu:Fe ratio (1.04±0.08 vs 1.02±0.09) was not significantly different (Student's t-test; p>0.05) in the two groups. Varying differences were noted in the case of antioxidant enzyme activities between the control and study groups. We conclude that obesity is associated with alterations in maternal-fetal disposition of some essential trace elements and antioxidant enzyme status and that these alterations could pose a potential health risk for the mother as well as the fetus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Tyrala, The infant of the diabetic mother, Obstet. Gynecol. Clin. North Am. 23, 221–241 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. R. R. Versiani, E. Gilbert-Barness, L. R. Giuliani, L. C. Peres, and J. M. Pina-Neto, Caudal dysplasia: severe phenotype presenting in offspring of patients with gestational and pregestational diabetes, Clin. Dysmorphol. 13, 1–5 (2004).

    Article  PubMed  Google Scholar 

  3. R. Schwartz, and K. A. Teramo, Effects of diabetic pregnancy on the fetus and newborn, Semin. Perinatol. 24, 120–135 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. N. A. Abdella, M. M. Khogali, A. D. Salman, S. A. Ghuneimi, and J. S. Bajaj, Pattern of non-insulin dependent diabetes mellitus in Kuwait, Diabetes Res. Clin. Pract. 29, 129–136 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. N. Abdella, M. Al-Arouj, A. Al-Nakhi, A. Al-Assoussi, and M. Moussa, Non-insulin dependent diabetes in Kuwait: prevalence rates and associated risk factors, Diabetes Res. Clin. Pract. 42, 187–196 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. I. T. El-Mugamer, A. S. Ali Zayat, M. M. Hossain, and R. N. Pugh, Diabetes, obesity and hypertension in urban and rural people of bedouin origin in the United Arab Emirates, J. Trop. Med. Hyg. 98, 407–415 (1995).

    PubMed  CAS  Google Scholar 

  7. H. H. Fatani, S. A. Mira, and A. G. El-Zubier, Prevalence of diabetes mellitus in rural Saudi Arabia, Diabetes Care 10, 180–183 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. M. L. Watkins, K. S. Scanlon, J. Mulinare, and M. J. Khoury, Is maternal obesity a risk factor for anencephaly and spina bifida? Epidemiology 7, 507–512 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. J. L. Anderson, D. K. Waller, M. A. Canfield G. M. Shaw, M. L. Watkins, and M. M. Werler, Maternal obesity, gestational diabetes and central nervous system birth defects, Epidemiology 16, 87–92 (2005).

    Article  PubMed  Google Scholar 

  10. C. Amodeo, and F. H. Messerli, Risks for obesity, Cardiol. Clin. 4, 75–80 (1986).

    PubMed  CAS  Google Scholar 

  11. T. E. Scott, W. W. LaMorte, D. R. Gorin, and J. O. Menzoian, Risk factors for chronic venous insufficiency, a dual case-control study, J. Vasc. Surg. 22, 622–628 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. E. Al-Saleh, M. Nandakumaran, M. Al-Shammari, M. Makhseed, T. Sadan, and A. Harouny, Maternal-fetal status of copper, iron, molybdenum, selenium and zinc in insulin-dependent diabetic pregnancies, Arch. Gynecol. Obstet. 271, 212–217 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. E. Al-Saleh, M. Nandakumaran, M. Al-Shammari, and A. Harouny, Maternal-fetal status of copper, iron, molybdenum, selenium and zinc in patients with gestational diabetes, J. Matern. Fetal Neonatal Med. 16, 15–21 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. W. Mertz, The essential trace elements, Science 213, 1332–1338 (1981).

    Article  PubMed  CAS  Google Scholar 

  15. R. S. Gibson, Assessment of trace element status in humans, Prog. Nutr. Sci. 13, 67–111 (1989).

    CAS  Google Scholar 

  16. D. M. Danks, Copper deficiency in humans, Annul. Rev. Nutr. 3, 235–257 (1988).

    Article  Google Scholar 

  17. E. Kessopoulo, M. J. Tomlinson, C. L. Barrat, A. E. Bolton, and I. D. Cooke, Origin of reactive oxygen species in human semen: spermatozoa or leucocytes? J. Reprod. Fertil. 4, 463–470 (1992).

    Google Scholar 

  18. J. R. Turnlund, W. R. Keyes, and G. L. Peiffer, Molybdenum absorption, excretion and retention studied with stable isotopes in young men at five intakes of dietary molybdenum, Am. J. Clin. Nutr. 62, 790–796 (1995).

    PubMed  CAS  Google Scholar 

  19. K. V. Rajagopalan, Molybdenum: an essential trace element in human nutrition, Annu. Rev. Nutr. 8, 401–427 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. W. C. Peerebom, General aspects of trace elements and health, Sci. Total Environ. 42, 1–27 (1985).

    Article  Google Scholar 

  21. A. S. Prasad, Zinc, an overview, Nutrition 11, 93–99 (1995).

    PubMed  CAS  Google Scholar 

  22. D. V. Godin, S. A. Wohaieb, M. E. Garnett, and A. D. Goumeniouk, Antioxidant enzyme alterations in experimental and clinical diabetes, Mol. Cell. Biochem. 84, 223–231 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. J. W. Baynes, Role of oxidative stress in development of complications in diabetes Diabetes 40, 405–412 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. N. J. Miller, C. Rice-Evans, M. J. Davies, V. Gopinathan, and A. Milner, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, Clin. Sci. 84, 407–412 (1993).

    PubMed  CAS  Google Scholar 

  25. C. A. Kumar and U. N. Das, Lipid peroxides, antioxidants and nitric oxide in patients with preeclampsia and hypertension, Med. Sci. Monit. 6, 901–907 (2000).

    PubMed  CAS  Google Scholar 

  26. Y. Atamer, Y. Kocyigit, B. Yokus, A. Atamer, and A. C. Erden, Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia, Eur. J. Obstet. Gynecol. Reprod. Biol. 119, 60–66 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. S. P. Wolff, Diabetes mellitus and free radicals, Br. Med. Bull. 49, 642–652 (1993).

    PubMed  CAS  Google Scholar 

  28. A. Ornoy, V. Zaken, and R. Kohen, Role of reactive oxygen species (ROS) in the diabetes-induced anomalies in rat embryos in vitro: reduction in anti-oxidant enzymes and low molecular weight antioxidants (LMWA) may be the causative factor for increased anomalies, Teratology 60, 376–386 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. National Heart, Lung and Blood Instituite, Clinical guidelines on the identification and treatment of overweight and obesity, NIH Publ. (USA) 98, 4083E (1998).

    Google Scholar 

  30. E. Al-Saleh, M. Nandakumaran, M. Al-Shammari, F. Al-Falah, and A. Al-Harouny, Assessment of maternal-fetal status of some essential trace elements in pregnant women in late gestation: relationship with birth weight and placental weight, J. Matern. Fetals. Neonatal. Med. 16, 9–14 (2004).

    Article  CAS  Google Scholar 

  31. H. Urakawa, A. Katsuki, Y. Sumida, et al., Oxidative stress is associated with adiposity and insulin resistance in men, J. Clin. Endocrinol. Metab. 88, 4673–4676 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. M. Sjostrand, S. Gudbjornsdottir, A. Holmang, L. Lonn, L. Strindberg, and P. Linnroth, Delayed transcapillary transport of insulin to muscle interstitial fluid in obese subjects, Diabetes 51, 2742–2748 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. J. P. Despres, S. Lemieux, B. Lamarche, et al., The insulin resistance-dislipidemic syndrome: contribution of visceral obesity and therapeutic implications, Int. J. Obes. Related Metab. Dis. 19, 76–86 (1995).

    Google Scholar 

  34. T. J. Guzik, S. Mussa, D. Gastaldi, et al., Mechanisms of increases vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase, Circulation 105, 1656–1662 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. P. N. Singh, and G. E. Fraser, Dietary risk factors for colon cancer in a low-risk population, Am. J. Epidemiol. 148, 761–764 (1998).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Saleh, E., Nandakumaran, M., Al-Harmi, J. et al. Maternal-fetal status of copper, iron, molybdenum, selenium, and zinc in obese pregnant women in late gestation. Biol Trace Elem Res 113, 113–123 (2006). https://doi.org/10.1385/BTER:113:2:113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:113:2:113

Index Entries

Navigation