Skip to main content
Log in

Plasma paroaoxonase activities, lipoprotein oxidation, and trace element interaction in asthmatic patients

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Paraoxonase (PON1) protects low and high-density lipoproteins (LDL and HDL) against oxidation induced by reactive oxygen species formation facilitated by iron (Fe) and copper (Cu) ions. Plasma PON1, arylesterase, oxidized LDL (Ox-LDL), Cu, Fe, thiobarbituric acid-reactive substances (TBARS), lipid, lipoprotein, and apolipoprotein profile in bronchial asthma were determined and the relations among these parameters in different steps of asthma were interpreted. A total of 58 individuals, 30 asthmatics and 28 controls, were included into the scope of this study. Plasma PON1, arylesterase, and TBARS levels were measured spectrophotometrically. Determination of plasma oxidized LDL, Cu, and Fe levels were performed by enzyme-linked immunosorbent assay, atomic absorption spectrophotometry, and the automated TPTZ method, respectively. Apo-A-1 and Apo-B levels were determined immunoturbidometrically. Plasma total cholesterol, triglyceride, and HDL cholesterol levels were enzymatically determined. Plasma LDL levels were estimated using the Fridewald formula. The average plasma PON1 and arylesterase activities in the group of patients were lower than those of the individuals in the control group, but there was no statistically significant difference found between them (p>0.05). No significant difference was found in plasma Apo-A-1, Apo-B, total cholesterol, triglyceride, HDL, and LDL concentrations between the control and patient groups (p>0.05). Plasma oxidized LDL (p<0.05), Cu (p<0.01), Fe (p<0.01), and TBARS (p<0.001) levels in patients with asthma were found to be significantly higher than for the control group. Increases in Cu, Fe, lipid peroxidation, and oxidized LDL levels supported by relative decreases in PON1 activities observed in asthmatic patients might be introduced as the striking findings as well as the possible potential indicators of this airway disease, the prevalence of which has increased dramatically over recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. de Magalhaes Simoes, M. A. dos Santos, M. da Silva Oliveira, E. S. Fontes, and S. Fernezlian, Inflammatory cell mapping of the respiratory tract in fatal asthma, Clin. Exp. Allergy 35, 602–611 (2005).

    Article  PubMed  Google Scholar 

  2. P. Jeffery, Anti-inflammatory effects of inhaled corticosteroids in chronic obstructive pulmonary disease: similarities and differences to asthma, Expert Opin. Invest. Drugs 14, 619–632 (2005).

    Article  CAS  Google Scholar 

  3. C. Maziere, P. Morliere, Z. Massy, et al., Oxidized low-density lipoprotein elicits and intracellular calcium rise an increases the binding activity of the transcription factor NFAT, Free Radical Biol. Med. 38, 472–480 (2005).

    Article  CAS  Google Scholar 

  4. H. J. Dhong, H. Y. Kim, and D. Y. Cho, Histopathologic characterstics of chronic sinusitis with bronchial asthma, Acta Otolaryngol. 125, 169–176 (2005).

    Article  PubMed  Google Scholar 

  5. J. B. Sedgwick, Y. S. Hwang, H. A. Gerbyshak, H. Kita, and W. W. Busse, Oxidized low density lipoprotein activates migration and degranulation of human granulocytes, Am. J. Respir. Cell. Mol. Biol. 29, 702–709 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. G. M. Chisolm and D. Steinberg, The oxidative modification hypothesis of atherogenesis: an overview, Free Radical Biol. Med. 28, 1818–1826 (2000).

    Google Scholar 

  7. F. W. Kemp, J. DeCandia, W. Li, K. Bruening, H. Baker, and D. Rigassio, Relationships between immunity and dietary and serum antioxidants, trace metals, B vitamins, and homocysteine in elderly men and women. Nutr. Res. 22, 45–53 (2002).

    Article  CAS  Google Scholar 

  8. M. Navab, J. A. Berliner, G. Subbanagounder, et al., HDL and inflammatory response induced by LDL-derived oxidized phospholipids, Arterioscler. Thromb. Vasc. Biol. 21, 481–488 (2001).

    PubMed  CAS  Google Scholar 

  9. O. Raveh, I. Pinchuk, F. Menahem, and D. Lichtenberg, Kinetic of lipid peroxidation in mixtures of HDL and LDL, mutual effects, Free Radical Biol. Med. 3, 1486–1497 (2001).

    Article  Google Scholar 

  10. M. Aviram, S. Billecke, and R. Sorenson, Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different than that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase alloenzymes Q and R, Arterioscler. Thromb. Vasc. Biol. 18, 1617–1624 (1998).

    PubMed  CAS  Google Scholar 

  11. B. T. Heijmans, R. G. J. Westendorp, A. M. Lagaay, D. L. Knook, C. Kluft, and P. E. Slagboom, Common paraoxonase gene variants, mortality risk and fatal cardiovascular events in elderly subjects, Atherosclerosis 149, 91–97 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. M. Aviram, M. Rosenblat, and C. L. Bisgair, Paraoxonase inhibits high density lipoprotein (HDL) oxidation and preserves its functions: a possible peroxidative role for paraoxonase, J. Clin. Invest. 101, 1581–1590 (1998).

    PubMed  CAS  Google Scholar 

  13. C. Lenfant, Global Strategy for Asthma Management and Prevention, National Institutes of Health, Bethesda, MD (2002).

    Google Scholar 

  14. N. Rifai, P. S. Bachorik, and J. J. Albers, Lipids, lipoproteins, and apolipoproteins, in Tietz Textbook of Clinical Chemistry, 3rd ed., C. A. Burtis and E. R. Ashwood, eds., WB Saunders, Philadelphia, pp. 820–826 (1999).

    Google Scholar 

  15. J. A. Buege and S. D. Aust, Microsomal lipid peroxidation methods, Enzymology 12, 302–310 (1978).

    Article  Google Scholar 

  16. M. Harangi, E. Remenyik, I. Seres, Z. Varga, E. Katona, and G. Paragh, Determination of DNA damage induced by oxidative stress in hyperlipidemic patients, Mutat. Res. 513, 17–25 (2002).

    PubMed  CAS  Google Scholar 

  17. O. Hasselwander, D. A. Savage, D. McMaster, C. M. Loughrey, and P. T. McNamee, Paraoxonase polymorphisms are not associated iwth cardiovascular risk in renal transplant recipients, Kidney Int. 56, 289–298 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. N. W. Alcock, Copper, in Methods in Clinical Chemistry, A. J. Pasce and L. A. Kaplan, eds., Mosby, St Louis, MO, pp. 527–538 (1987).

    Google Scholar 

  19. Shimadzu Corp., Atomic Absorption Spectrophotometry Cookbook, Shimadzu Corp., Kyoto, Sect. 1–4, p. 10 (1998).

    Google Scholar 

  20. D. B. Milne, Trace elements, in Tietz Textbook of Clinical Chemistry, 3rd ed., C. A. Burtis and E. R. Ashwood, eds., WB Saunders, Philadelphia, pp. 1029–1055 (1999).

    Google Scholar 

  21. M. Paoli-de Valeri, Y. Zerpa-de Miliani, E. G. Valeri-Davila, and G. Bellabarba, Adrenal function and lipid metabolism in asthmatic children treated with budesonide, Salud Public. Mex. 41, 119–123 (1999).

    CAS  Google Scholar 

  22. E. Turley, A. McKeown, M. P. Bonham, etal., Copper supplementation in humans does not affect the susceptibility of low density lipoprotein to in vitro induced oxidation (Foodcue Project), Free Radical Biol. Med. 29, 1129–1134 (2000).

    Article  CAS  Google Scholar 

  23. J. Gallego-Nicasio, G. Lopez-Rodriquez, R. Martinez, M. J. Tarancon, M. V. Fraile, and P. Carmona, Structural changes of low density lipoproteins with Cu2+ and glucose induced oxidation, Biopolymers 72, 514–520 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. X. Cheng, Y. Cui, Y. Chen, and X. Zhang, Effects of alpha-tocopherol and beta-carotene on the oxidized low density lipoprotein induced by Cu2+, Wei Sheng Yan Jiu 29, 229–231 (2000).

    PubMed  CAS  Google Scholar 

  25. E. Sarandöl, Ö. Şafak, M. Dirican, and G. Uncu, Oxidizability of apolipoprotein B-containing lipoproteins and serum paraoxonase/arylesterase activities in preeclampsia, Clin. Biochem. 37, 990–996 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. M. Aviram, M. Rosenblat, B. Scott, et al., Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants, Free Radical Biol. Med. 26, 892–904 (1999).

    Article  CAS  Google Scholar 

  27. A. Ayub, M. I. Mackness, S. Arrol, B. Mackness, J. Patel, and P. N. Durrington, Serum paraoxonase after myocardial infarction, Arterioscler. Thromb. Vasc. Biol. 19, 330–335 (1999).

    PubMed  CAS  Google Scholar 

  28. D. B. Rousselot, P. Therond, J. L. Beaudux, J. Peynet, A. Legrand, and J. Delattre, High density lipoprotein (HDL) and the oxidative hypothesis of atherosclerosis, Clin. Chem. Lab. Med. 37, 939–948 (1999).

    Article  Google Scholar 

  29. P. M. Laplaud, T. Dantoine, and M. J. Chapman, Paraoxonase as a risk marker for cardiovascular disease: facts and hypotheses, Clin. Chem. Lab. Med. 36, 431–444 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. M. I. Mackness, S. Arool, and P. N. Durrington, Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein, FEBS 286, 152–154 (1991).

    Article  CAS  Google Scholar 

  31. M. I. Mackness, S. Arrol, C. Abbott, and P. N. Durrington. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase, Atherosclerosis 104, 129–135 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. M. I. Mackness, D. Harty, D. Bhartnagar, et al., Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus, Atherosclerosis 86, 193–199 (1999).

    Article  Google Scholar 

  33. D. Steinberg, Low density lipoprotein oxidation and its pathobiological significance, J. Biol. Chem. 272, 20,963–20,966 (1997).

    Article  CAS  Google Scholar 

  34. G. Gornicka, J. Beltowski, G. Wojcicka, and A. Jamroz, Serum paraoxonase activity, total antioxidant potential and lipid peroxidation products in children with bronchial asthma exacerbation, Wiad. Lek. 55, 257–263 (2002).

    PubMed  Google Scholar 

  35. B. Mackness, R. Hunt, P. N. Durrington, and M. I. Mackness, Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-1 in the human artery wall with the progression of atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 17, 1233–1238 (1997).

    PubMed  CAS  Google Scholar 

  36. S. Wiersbitzky, E. H. Ballke, R. Burghart, et al., Long-term study of various immunologic functions in children with chronic nonspecific lung disease, Z. Erk. Atmungsorg. 164, 241–253 (1985).

    CAS  Google Scholar 

  37. F. Mateos, J. H. Brock, and J. L. Perez-Arellano, Iron metabolism in the lower respiratory tract, Thorax 53, 594–600 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. H. Vural, K. Uzun, E. Uz, A. Kocyigit, A. Cigli, and O. Akyol, Concentrations of copper, zinc and various elements in serum of patients with bronchial asthma. J. Trace Elements Med. Biol. 14, 88–91 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekmekci, O.B., Donma, O., Ekmekci, H. et al. Plasma paroaoxonase activities, lipoprotein oxidation, and trace element interaction in asthmatic patients. Biol Trace Elem Res 111, 41–52 (2006). https://doi.org/10.1385/BTER:111:1:41

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:41

Index Entries

Navigation