Skip to main content
Log in

Determination of iodine in Libyan food samples using epithermal instrumental neutron activation analysis

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Epithermal instrumental neutron activation analysis (EINAA) has been used to determine the iodine content of many individual food materials that constitute the typical Libyan diet. The selected samples include different varieties of local and imported foods such as wheat and barley products, rice, bread, legumes such as chick peas and lentil, table salt, and commonly used spices, including thyme and fenugreek. Both conventional and anticoincidence γ-ray spectrometry techniques have been employed. Epithermal INAA in conjunction with anticoincidence counting has been found to provide the most reliable results. For quality control purposes, a number of NIST biological reference materials were analyzed. The range of daily dietary intake has been calculated as 100–180 μg of iodine per day, which is within the recommended range. Bread was identified as a significant source of iodine in the Libyan diet, as it contributed 99 μg/d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization, Trace Elements in Human Nutrition and Health, WHO, Geneva (1996).

    Google Scholar 

  2. World Health Organization, Iodine Status Worldwide: WHO Global Database on Iodine Deficiency, WHO, Geneva (2004).

    Google Scholar 

  3. E.J. Underwood, Trace Elements in Human and Animal Nutrition, 4th ed., Academic, New York (1977).

    Google Scholar 

  4. R. R. Rao, J. Holzbecher, and A. Chatt, Epithermal instrumental neutron activation analysis of biological reference materials for iodine, Fresenius J. Anal. Chem. 352(1–2), 53–57 (1995).

    Article  CAS  Google Scholar 

  5. P. Unak, F. Y. Lambrecht, F. Z. Biber, S. Teksoz, P. Eriskin, and N. Kansu, Iodine determination in milk by isotope dilution analysis, J. Radioanal. Nucl. Chem. 259(2), 321–324 (2004).

    Article  Google Scholar 

  6. M. V. Frontasyeva and E. Steinnes, International Symposium on Harmonization of Health Related Environmental Measurements Using Nuclear and Isotopic Techniques, IAEA, Vienna (1997).

  7. R. R. Rao and A. Chatt, Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine. Anal. Chem. 63, 1298–1303 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. M. Dermeli, Z. Slekovec, A. R. Byrne, P. Stegner, V. Stibilj, and M. Rossbach, Iodine in different food articles and standard reference materials. Fresenius J. Anal. Chem. 338, 559–561 (1990).

    Article  Google Scholar 

  9. R. R. Rao and A. Chatt, Determination of nanogram amounts of iodine in foods by radiochemical neutron activation analysis, Analyst 118, 1247–1251 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. H. S. Dang, D. D. Jaiswal, and S. Nair, A comparison of three activation analysis methods for iodine determination in foodstuffs, J. Radioanal. Nucl. Chem. 249(1), 61–65 (2001).

    Article  Google Scholar 

  11. J. Kucera, G. V. Iyengar, Z. Randa, and R. M. Parr, Determination of iodine in Asian diets by epithermal and radioanalytical neutron activation analysis, J. Radioanal. Nucl. Chem. 259(3), 505–509 (2004).

    Article  CAS  Google Scholar 

  12. X. Hou, C. Chai, Q. Qian, C. Li, and K. Wang, Determination of bromine and iodine in biological and environmental materials using epithermal neutron activation analysis, Fresenius J. Anal. Chem. 357(8), 1106–1110 (1997).

    Article  CAS  Google Scholar 

  13. Y. Serfor-Armah, B. J. B. Nyarko, J. Holzbecher, E. H. K. Akaho, E. K. Osae, and A. Chatt, Epithermal instrumental neutron activation analysis with Compton suppression spectrometry for the determination of iodine in food samples. J. Radioanal. Nucl. Chem. 256(2) 259–262 (2003).

    Article  CAS  Google Scholar 

  14. V. Singh and A. N. Garg, Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake, Food Chem. 94(1), 81–89 (2006).

    Article  CAS  Google Scholar 

  15. X. Hou, C. Chai, Q. Qian, G. Liu, Y. Zhang, and K. Wang, The study of iodine in Chinese total diets, Sci. Total Environ. 193, 161–167 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. Walter Mertz, Trace Elements in Human and Animal Nutrition, 5th ed., Academic New York (1986).

    Google Scholar 

  17. Food and Nutrition Board, National Research Council, Recommendation Dietary Allowances, 10th ed., National Academy Press, Washington, DC (1989).

    Google Scholar 

  18. V. Chavasit, P. Malaivongse, and K. Judprasong, Study on stability of iodine in iodated salt by use of different cooking model conditions, J. Food Compos. Anal., 15(3), 265–276 (2002).

    Article  CAS  Google Scholar 

  19. L. L. Diosady, J. O. Alberti, M. G. Venkatesh Mannar, and S. Fitz Gerald, Stability of iodine in iodized salt used for correction of iodine-deficiency disorder II, Food Nutr. Bull. 19(3), 240–250 (1998).

    Google Scholar 

  20. The World Health Organization (WHO), Guidelines for the Study of Dietary Intake of Chemical Contents, WHO offset publication No. 87:20, WHO, Geneva, pp. 20–30 (1985).

    Google Scholar 

  21. P. W. F. Fischer and A. Giroux, Iodine content of a representative Canadian diet, J. Can. Diet. Assoc. 48(1), 24–27 (1987).

    Google Scholar 

  22. R. M. Parr, N. K. Aras, and G. V. Iyengar, Dietary intakes of essential trace elements: Results from total diet studies supported by the IAEA, in 8th International Conference on Nuclear Analytical Methods in the Life Sciences, Rio de Janeiro, Brazil, 17–22 April 2005.

  23. A. G. Gharib, A. A. Aminpour, and A. Ahmadiniar, Simulation of Iranian total mixed diets and their analysis for essential and toxic trace elements using nuclear and complementary analytical techniques, J. Radioanal. Nucl. Chem. 249(1), 47–60 (2001).

    Article  CAS  Google Scholar 

  24. G. V. Iyengar, H. Kawamura, R. M. Parr, et al., Dietary intake of essential minor and trace elements from Asian diets, Food Nutr. Bull. 23(3) (Suppl.), 124–128 (2002).

    PubMed  Google Scholar 

  25. P. Akhter, K. ur-Rehman, S. Din Orfi, and N. Ahmad, Assessment of iodine level in the Pakistani diet, Nutrition 20(9), 783–787 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. V. Stibilj, L. Pograjc, C. Hlastan Ribic, et al., Se and I content in military total diet, in International Conference on Isotopic and Nuclear Analysis Techniques for Health and Environment Vienna, 10–13 June 2003.

  27. M. Haldimann, A. Alt, A. Blanc, and K. Blondean, Iodine content of food groups, J. Food Compos. Anal. 18, 461–471 (2005).

    Article  CAS  Google Scholar 

  28. G. V. Iyengar, W. R. Wolf, J. T. Tanner, and E. R. Morris, Content of minor and trace elements and organic nutrients in representative mixed total diet composites from the USA, Sci. Total Environ. 256, 215–226 (2000).

    Article  CAS  Google Scholar 

  29. M. Rose, P. Miller, M. Baxter, G. Appleton, H. Crews, and M. Croasdale, Bromine and iodine in 1997 UK total diet study samples, J Environ. Monit. 3(4), 361–365 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Ghawi, U.M., Al-Sadeq, A.A. Determination of iodine in Libyan food samples using epithermal instrumental neutron activation analysis. Biol Trace Elem Res 111, 31–40 (2006). https://doi.org/10.1385/BTER:111:1:31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:31

Index Entries

Navigation