Skip to main content
Log in

Real-time dynamic monitoring of nonprotein-bound copper in the blood

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To obtain real-time dynamic changes of non-protein-bound copper in the blood, we have developed an online microdialysis sampling system coupled with a flow-injection graphite furnace-atomic absorption spectrometer (FI-GFAAS). The analytical performances of the online system such as linearity, limit of detection, precision, and spiked recoveries were validated. Before the in vivo experiments, the in vivo recovery was conducted. The levels of non-protein-bound Cu in the blood of living rabbits were evaluated before and after administering them with 5 mg/kg body weight of CuSO4 by the online microdialysis-FI-GFAAS system. The results showed that the avarage basal concentration of non-protein-bound Cu in the blood of living rabbits was 16.2 μg/L (n=3). Furthermore, the levels of non-protein-bound Cu in the blood of living rabbits were observed after a long delay following intravenous injection of CuSO4. The non-protein-bound Cu reached the maximum value at 125 min after injection. Our present study might provide the in vivo, direct observation that different metals have their own binding characteristics with proteins when transported into the blood of living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Harris, Basic and clinical aspects of copper, Crit. Rev. Clin. Lab. Sci. 40, 547–586 (2003).

    PubMed  CAS  Google Scholar 

  2. H. Tapiero, D. M. Townsend, and K. D. Tew, Trace elements in human physiology and pathology. Copper, Biomed. Pharmacother. 57, 386–398 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. P. Parmar and S. Daya, The effect of copper on (3H)-tryptophan metabolism in organ cultures of rat pineal glands, Metab. Brain. Dis. 16, 199–205 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. D. Ozcelik, R. Ozaras, Z. Gurel, H. Uzun, and S. Aydin, Copper-mediated oxidative stress in rat liver, Biol. Trace Element Res. 96, 209–215 (2003).

    Article  CAS  Google Scholar 

  5. K. B. O'Brien, M. Esguerra, R. F. Miller, and M. T. Bowser, Monitoring neurotransmitter release from isolated retinas using online microdialysis-capillary electrophoresis, Anal. Chem. 76, 5069–5074 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. X. Ao, T. J. Sellati, and J. A. Stenken, Enhanced microdialysis relative recovery of inflammatory cytokines using antibody-coated microspheres analyzed by flow cytometry, Anal. Chem. 76, 3777–3784 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. T. H. Tsai, Assaying protein unbound drugs using microdialysis techniques, J. Chromatogr. B 797, 161–173 (2003).

    Article  CAS  Google Scholar 

  8. W. C. Tseng, Y. C. Sun, M. H. Yang, T. P. Chen, T. H. Lin, and Y. L. Huang, On-line micro-dialysis sampling coupled with flow injection electrothermal atomic absorption spectrometry for in vivo monitoring of extracellular manganese in brains of living rats. J. Anal. Atomic Spectrom. 18, 38–43 (2003).

    Article  CAS  Google Scholar 

  9. W. C. Tseng, Y. C. Sun, C. F. Lee, M. H. Yang, and Y. L. Huang, Continuous in vivo monitoring of blood diffusible calcium using on-line microdialysis sampling coupled with flame atomic absorption spectrometry, Anal. Sci. 21, 225–229 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. N. Torto, J. Mwatseteza, and G. Sawula, A study of microdialysis sampling of metal ions, Anal. Chim. Acta 456, 253–261 (2002).

    Article  CAS  Google Scholar 

  11. D. J. Halls, Speeding up determinations by electrothermal atomic-absorption spectrometry, Analyst 109, 1081–1084 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. Y. L. Huang, I. C. Chuang, C. H. Pan, C. M. Hsiech, T. S. Shih, and T. H. Lin, Determination of chromium in human whole blood and urine by graphite furnace atomic absorption spectrophotometry, Atomic Spectrosc. 21, 10–16 (2000).

    CAS  Google Scholar 

  13. B. Halliwell and J. M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186, 1–85 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. M. C. Linder, Copper and genomic stability in mammals, Mutat. Res., 475, 141–152 (2001).

    PubMed  CAS  Google Scholar 

  15. P. M. Bungay, P. F. Morrison, and R. L. Dedrick, Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro, Life Sci. 46, 105–119 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SJ., Lee, CF., Tseng, WC. et al. Real-time dynamic monitoring of nonprotein-bound copper in the blood. Biol Trace Elem Res 111, 255–263 (2006). https://doi.org/10.1385/BTER:111:1:255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:255

Index Entries

Navigation