Skip to main content
Log in

Serum and hair levels of zinc, selenium, iron, and copper in children with iron-deficiency anemia

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present study, the serum and hair levels of zinc, selenium, and copper were determined in children with iron-deficiency anemia (IDA). A total of 52 anemic children aged 1–4 yr constituted the study group. Fortysix healthy children acted as controls. The copper and zinc levels were measured with an atomic absorption spectrophometer. Serum and hair selenium was determined by a spectroflourometric method. The serum zinc and selenium concentrations in the IDA group were found to be significantly lower and serum copper significantly higher than those in the controls (p<0.05). Lower iron, zinc, and selenium concentrations (p<0.001) but not copper were found in hair (p>0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Diaz-Gomez, E. Domenech, F. Barroso, S. Castells, C. Cortabarria, and A. Jimenez, The effect of zinc supplemention on linear growth, body composition, and growth factors in preterm infants, Pediatrics 111, 1002–1009 (2003).

    Article  PubMed  Google Scholar 

  2. F. A. Oski, Iron deficiency in infancy and childhood, N. Engl. J. Med. 329, 190–196 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. M. A. Aukett, Y. A. Parks, P. H. Scott, and B. A. Wharton, Treatment with iron increases weight gain and pschomotor development, Arch. Dis. Child 71, 877–880 (1986).

    Google Scholar 

  4. M. H. N. Golden, The nature of nutritional deficiency in relation to growth failure and poverty, Acta Paediatr. Scand. 374 (Suppl.), 95–110, (1991).

    CAS  Google Scholar 

  5. C. Nacy and K. R. Adrews, Disorders of iron metabolism and sideroblastic anemia, in Nathan and Oski's Haematology of Infancy and Childhood, D. G. Natha, and S.H. Orkin, eds., W. B. Saunders, Philadelphia, pp. 424–452 (1998).

    Google Scholar 

  6. I. W. Booth, Iron deficiency anemia in infancy and early childhood, Arch. Dis. Child. 76, 549–554 (1997).

    PubMed  CAS  Google Scholar 

  7. A. Prasad, A. Miale, Z. Farid, and H. H. Sanstead, Zinc metabolizm in patients with the syndrome of iron deficiency anemia, hypogonadizm, and dwarfism, J. Lab. Clin. Med. 61, 483–490 (1963).

    Google Scholar 

  8. A. Prasad, Discovery of human zinc deficiency and studies in an experimental human model, Am. J. Clin. Nutr. 53, 403–412 (1991).

    PubMed  CAS  Google Scholar 

  9. A. Ece, B. S. Uyanik, A. Işcan, P. Ertan, and M. R. Yiĝitoĝlu, Increased serum copper and decreased serum zinc levels in children with iron deficiency anemia, Biol. Trace. Element Res. 59, 31–39 (1997).

    CAS  Google Scholar 

  10. J. Hastka, J. J. Lasserre, A. Schwarzbeck, and R. Hehlmann, Central role of zinc protoporphyrin in staging iron deficiency, Clin. Chem. 40, 768–773 (1994).

    PubMed  CAS  Google Scholar 

  11. H. Tapiero, D. M. Townsend, and K. D. Tew, Trace elements in human physiology and pathology. Copper, Biomed. Pharmacother.. 57, 386–398 (2003).

    Article  CAS  Google Scholar 

  12. W. A. Nacy, Trace elements, in Clinical Chemistry, A. K. Lawrence, ed., Mosby, Philadelphia, pp. 746–754 (1995).

    Google Scholar 

  13. R. E. Litow and G. F. Combs, Selenium in pediatric nutrition, Pediatrics 87, 339–346 (1991).

    Google Scholar 

  14. M. L. Hu and J. E. Spallholz, Dietary selenium and aniline-induced methemoglobinemia in rats, Toxicol. Lett. 25, 205–210 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. C. K. Chow and C. J. Chen, Dietary selenium and age-related susceptibility of rat erythrocytes to oxidative damage, J. Nutr. 110, 2460–2466 (1980).

    PubMed  CAS  Google Scholar 

  16. P. Bermejo-Barrera, O. Muniz-Naveiro, A. Moreda-Pineiro, and A. Bermejo-Barrera, Experimental designs in the optimisation of ultrasonic bath-acid-leaching procedures for the determination of trace elements in human hair samples by atomic absorption spectrometry. Forensic. Sci. Int. 107, 105–120 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. A. Ölçücü and P. Çaĝlar, Zinc levels in human hair and serum of infants and children and their relationship to various diseases in the upper Euphrates basin, J. Trance. Elements Exp. Med. 6, 141–145 (1993).

    Google Scholar 

  18. L. Lalonde, Y. Jean, K. D. Roberts, A. Chapdelaine, and G. Blean, Fluorometry of selenium in serum. Clin. Chem. 28, 172–174 (1982).

    PubMed  CAS  Google Scholar 

  19. M. Hambidge, Biomarkers of trace mineral intake and status, J. Nutr. 133, 948–955 (2003).

    Google Scholar 

  20. P. R. Dallman, R. Yip, and C. Johnson, Prevalence and causes of anemia in the United states, 1976–1980, Am. J. Clin. Nutr. 39, 437–445 (1994).

    Google Scholar 

  21. Y. Eroĝlu and G. Hiçsönmez, Hacettepe Üniversitesi Çocuk Hastanesi'nde anemi görülme sikliĝi ve nedenleri, Çocuk Saĝhĝi ve Hastaliklari Dergisi 37, 267–271 (1994).

    Google Scholar 

  22. M. K. Yadrick, M. A. Kenney, and E. A. Winterfeldt, Iron, copper and zinc status: response to supplementation with zinc or zinc and iron in adult females, Am. J. Clin. Nutr. 49, 145–150 (1989).

    PubMed  CAS  Google Scholar 

  23. L. S. Valberg, P. R. Flanagan, and M. J. Chamberlain, Effects of iron, tin and copper on zinc absorption in humans, Am. J. Clin. Nutr. 40, 536–541 (1984).

    PubMed  CAS  Google Scholar 

  24. L. Mikhailova, E. Keen, and K. Roskova, Iron, copper and zinc concent in healty person and iron deficiency anemia patients, Vurr. Boles. 20, 114–121 (1981).

    CAS  Google Scholar 

  25. A. E. Gomez, F. Lisbona, A. I. Lopez, et al., The absorbtion of iron, calcium, phosohorus, magnesium, copper and zinc in the jejunum-ileum of control and iron deficient rats, Lab. Anim. 32, 72–79 (1998).

    Google Scholar 

  26. A. Shukla, K. N. Agarwal, and G. S. Shukla, Effects of latent iron deficiency on the levels of iron, calcium, zinc, copper, manganese, cadmium and lead in liver, kidney and spleen of growing rats, Res. Art. 146, 751–752 (1990).

    Google Scholar 

  27. S. Yetgin, F. Hincal, N. Başaran, and G. Ciliv, Serum selenium status in children with iron deficiency anemia, Acta Haematol. 88, 185–188 (1992).

    PubMed  CAS  Google Scholar 

  28. L. S. McAnulty, S. S. Gropper, S. R. McAnulty, and R. E. Keith, Iron depletion without anemia is not associated with impaired selenium status in college-aged women, Biol. Trace. Element Res. 91, 125–136 (2003)

    Article  CAS  Google Scholar 

  29. S. Yetgin, G. Ciliv and Ç. Altay, Neutrophil glutathione peroxidase activety in iron deficiency anemia, Scand. J. Haematol. 36, 58–60 (1986).

    Google Scholar 

  30. R. Rodvien, A. Gillum, and L. R. Weintrauh, Decreased glutathione peroxidas activity secondary to severe iron deficiency: a possible mechanism responsible for the shorter life span of the iron-deficient red cell, Blood 43, 281–285 (1974).

    PubMed  CAS  Google Scholar 

  31. P. M. Moriarty, M. F. Picciano, J. L. Beard, and C. C. Reddy, Classical selenium-dependent glutatione peroxidase expression is decreased secondary to iron deficiency in rats, J. Nutr. 125, 293–301 (1995).

    PubMed  CAS  Google Scholar 

  32. R. Laitinen, E. Vuori, and H. K. Akerblom, Hair zinc and copper: relationship to type and serum concentrations in children and adolescents, Biol. Trace. Element Res, 16, 227–237 (1988).

    CAS  Google Scholar 

  33. H. M. Huang, P. L. Leung, D. Z. Sun, and M. G. Zhu, Hair and serum calcium, iron, copper, and zinc levels during normal pregnancy at three trimesters, Biol. Trace. Element Res. 69, 111–120 (1999).

    CAS  Google Scholar 

  34. E. Hac, J. Krechniak, and M. Szyszko, Selenium levels in human plasma and hair in northern Poland, Biol. Trace. Element Res. 85, 277–285 (2002).

    Article  CAS  Google Scholar 

  35. M. Folin, E. Contiero, and G. M. Vaselli, Trace element determination in humans. The use of blood and hair, Biol. Trace. Element Res. 31, 147–158 (1991).

    Article  CAS  Google Scholar 

  36. S. B. Deeming and C. W. Weber, Hair analysis of trace minerals in humans subjects as influenced by age, sex, and contraceptive drugs, Am. J. Clin. Nutr. 31, 1175–1180 (1978).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gürgöze, M.K., Ölçücü, A., Aygün, A.D. et al. Serum and hair levels of zinc, selenium, iron, and copper in children with iron-deficiency anemia. Biol Trace Elem Res 111, 23–29 (2006). https://doi.org/10.1385/BTER:111:1:23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:23

Index Entries

Navigation