Skip to main content
Log in

Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Neonatal rats were exposed to airborne manganese sulfate (MnSO4) (0, 0.05, 0.5, or 1.0 mg Mn/m3) during gestation (d 0–19) and postnatal days (PNDs) 1–18. On PND19, rats were killed, and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) and tyrosine hydroxylase (TH) protein levels, metallothionein (MT), TH and GS mRNA levels, and reduced and oxidized glutathione (GSH and GSSG, respectively) levels were determined for all five regions. Mn exposure (all three doses) significantly (p=0.0021) decreased GS protein levels in the cerebellum, and GS mRNA levels were significantly (p=0.0008) decreased in the striatum. Both the median and high dose of Mn significantly (p=0.0114) decreased MT mRNA in the striatum. Mn exposure had no effect on TH protein levels, but it significantly lowered TH mRNA levels in the olfactory bulb (p=0.0402) and in the striatum (p=0.0493). Mn eposure significantly lowered GSH levels at the median dose in the olfactory bulb (p=0.032) and at the median and high dose in the striatum (p=0.0346). Significantly elevated (p=0.0247) GSSG, which can be indicative of oxidative stress, was observed in the cerebellum of pups exposed to the high dose of Mn. These data reveal that alterations of oxidative stress biomarkers resulting from in utero and neonatal exposures of airborne Mn exist. Coupled with our previous study in which similarly exposed rats were allowed to recover from Mn exposure for 3 wk, it appears that many of these changes are reversible. It is important to note that the doses of Mn utilized represent levels that are a hundred- to a thousand-fold higher than the inhalation reference concentration set by the United States Environmental Protection Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Dobson, S. Weber, D. C. Dorman, L. K. Lash, K. M. Erikson, and M. Aschner, Inhaled manganes sulfate and measures of oxidative stress in rat brain, Biol. Trace Elem. Res. 93, 113–126 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. S. Weber, D. C. Dorman, L. H. Lash, K. Erikson, K. E. Vrana, and M. Aschner, Effects of manganese (Mn) on the developing rat brain: oxidative-stress related endpoints, Neurotoxicology 23, 169–175 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. K. M. Erikson, D. C. Dorman, L. H. Lash, A. W. Dobson, and M. Aschner, Airborne manganese exposure differentially affects endpoints of oxidative stress in an age and sex-dependent manner, Biol. Trace Elem. Res. 100, 49–62 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. K. M. Erikson, D. C. Dorman, L. H. Lash, and M. Aschner. Persistent alterations in biomarkers of, oxidative stress resulting from combined in utero and neonatal manganese inhalation, Biol. Trace Elem. Res. 104, 151–164 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. L. S. Hurley and C. L. Keen, Manganese in Trace Elements in Human Health and Animal Nutrition, E. Underwood and W. Mertz, eds., Academic, New York, pp. 185–223 (1987).

    Google Scholar 

  6. M. Aschner, K. M. Erikson, and D. C. Dorman, Manganese dosimetry: species differences and implications for neurotoxicity, Criti. Rev. Toxicol. 35, 1–32 (2005).

    Article  CAS  Google Scholar 

  7. ATSDR (Agency for Toxic Substances and Disease Registry). Toxiocological Profile for Manganese, US Department of Health And Human Services Public Health Service. available at http://www.atsdr.cdc.gov/toxprofiles/tp151.html (accessed September 2000).

  8. D. Mergler, G. Huel, R. Bowler, et al., Nervous system dysfunction among workers with long-term exposure to manganese, Environ. Res. 64, 151–180 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. P. K. Pal, A. Samii, and D. B. Calne, Manganese neurotoxicity: a review of clinical features, imaging and pathology, Neurotoxicology 20, 227–238 (1999).

    PubMed  CAS  Google Scholar 

  10. E. D. Pellizzari, C. A. Clayton, C. E. Rodes, et al. Particulate matter and manganese exposures in Indianapolis, Indiana, J. Exp. Anal. Environ. Epidemiol. 11, 423–440. (2001).

    Article  CAS  Google Scholar 

  11. M. Aschner, Manganese neurotoxicity and oxidative damage, in Metals and Oxidative Damage in Neurological Disorders, J. R. Connor, ed., Plenum, New York, pp. 77–93 (1997).

    Google Scholar 

  12. W. N. Sloot, J. Korf, J. F. Koster, L. E. A. DeWit, and J. B. P. Gramsbergen, Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo, Exp. Neurol. 138, 236–245 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. P. Galvani, P. Fumagalli, and A. Santagostino, Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese, Eur. J. Pharmacol. 293, 377–383 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. E. P. Brouillet, L. Shinobu, U. McGarvey, F. Hochberg, and M. F. Beal. Manganese injection into the rat striatum produces excitotoxic lesionsby impairing energy metabolism, Exp. Neurol. 120, 89–94 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. C. E. Gavin, K. K. Gunter, and T. E. Gunter, Manganese and calcium transport in mitochondria: implications for manganese toxicity, Neurotoxicology 20, 445–453 (1999).

    PubMed  CAS  Google Scholar 

  16. F. S. Archibald and C. Tyree, Manganese poisoning and the attack of trivalent manganese upon catecholamines, Arch. Biochem. Biophys. 256, 638–650 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. S. F. Ali, H. M. Duhart, G. D. Newport, G. W. Lipe, and W. Slikke, Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3, Neurodegeneration 4, 329–334 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. J. Y. Chen, G. C. Tsao, Q. Zhao, and W. Zheng, Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe−S] containing enzymes, Toxicol. Appl. Pharmacol. 175, 160–168 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. K. K. Gunter, L. M. Miller, M. Aschner, et al., XANES spectroscopy: a promising tool for toxicology: a tutorial, Neurotoxicology 23, 127–146 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. D. HaMai, A. Campbell, and S. C. Bondy, Modulation of oxidative events by multivalent manganese complexes in brain tissue, Free Radical Biol. Med. 31, 763–768 (2001).

    Article  CAS  Google Scholar 

  21. A. Meister and M. E. Anderson, Gltathione, Annu. Rev. Biochem. 52, 711–760 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. M. E. Gegg, B. Beltran, S. Salas-Pino, et al., Differential effect of nitric oxide on GSH metabolism and mitochondrial function in astrocytes and neurons: implications for neuroprotection/neurodegeneration? J. Neurochem. 86, 228–237 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. J. Sian, D. T. Dexter, A. J. Lees, et al., Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia, Ann. Neurol. 36, 356–361 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. M. S. Desole, G. Esposito, R. Mighelli, et al., Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese, Neuropharmacology 34, 289–295 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. G. K. Andrews, Regulation of metallothioneins gene expression, Prog. Food Nutr. Sci. 14, 193–258 (1990).

    PubMed  CAS  Google Scholar 

  26. M. T. Dunn, T. L. Blalock, and R. J. Cousins, Metallothionein, Proc. Soc. Exp. Biol. Med. 185, 107–119 (1987).

    PubMed  CAS  Google Scholar 

  27. D. H. Hamer, Metallothioneins, Annu. Rev. Biochem. 55, 913–951 (1986).

    PubMed  CAS  Google Scholar 

  28. Y. Itano, S. Noji, E. Koyama, et al., Bacterial edotoxin-induced expression of metallothionein genes in rat brain, as revealed by in sit hybridization, Neurosci. Lett. 124, 13–16 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. H. Shiraga, R. F. Pfeiffer, and M. Ebadi, The effects of 6-hydroxydopamine and oxidative stress on the level of brain metallothionein, Neurochem. Int. 23, 561–566 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. J. W. Bauman, J. Liu, Y. P. Liu, and C. D. Klaassen, Increase in metallothionein produced by chemicals that induce oxidative stess, Toxicol. Appl. Pharmacol. 110, 347–354 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. A. Martinez-Hernandez, K. P. Bell, and M. D. Norenberg, Glutamine synthetase: glial localization in the brain, Science 195, 1356–1358 (1977).

    Article  PubMed  CAS  Google Scholar 

  32. C. J. Van den Berg and D. A. Garfinkel, A simulation study of brain compartments metabolism of glutamate and related substances in mouse brain, Biochem. J. 123, 211–218 (1971).

    PubMed  Google Scholar 

  33. N. Westergaard, U. Sonneald, and A. Schousboe, Metabolic trafficking between neurons and astrocytes: the glutamate glutamine cycle revisited, Dev. Neurosci. 17, 203–211 (1995).

    PubMed  CAS  Google Scholar 

  34. O. P. Ottersen, N. Zhang, and F. Walberg, Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum, Neuroscience 46, 519–534 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. E. R. Stadtman, Protein oxidation and aging, Science 257, 1220–1224 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. D. C. Dorman, A. M. McElveen, M. W. Marshall, et al., Tissue manganese concentrations in lactating rats and their offspring following combined in utero and lactation exposure to inhaled manganese sulfate, Toxicol. Sci. 84, 12–21 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. V. Barbu and F. Dautry, Northern blot normalization with a 28S rRNA oligonucleotide probe, Nucleic Acids Res. 17, 7115 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. M. W. Fariss and D. J. Reed, High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives, Methods Enzymol. 143, 101–109 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. L. H. Lash and J. J. Tokarz, Oxidative stress in isolated rat renal proximal and distal tubular cells, Am. J. Physiol., 259, F338-F347 (1990).

    CAS  Google Scholar 

  40. L. H. Lash and E. B. Woods, Cytotoxicity of alkylating agents in isolated rat kidney proxima and distal tubular cells, Arch. Biochem. Biophys. 286, 46–56 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. US EPA, Integrated Risk Information System (IRIS), Health ris assessment for manganese, Envirionmental Criteria and Assessment Office, Cincinnati, OH (1993).

    Google Scholar 

  42. C. L. Keen, J. G. Bell, and B. Lonnerdal, The, effect of age on manganese uptake and retention from milk and infant formulas in rats, J. Nutr. 116, 395–402, 1986.

    PubMed  CAS  Google Scholar 

  43. U. Sonnewald, N. Westergaard, and A. Schousboe, Glutamate transport and metabolism in astrocytes, Glia 21, 56–63 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. S. Hussain, W. Slikker, Jr., and S. F. Ali, Role of metallothionein and other antoxidants in scavenging superoxide radicals and their possible role in neuroprotection, Neurochem. Int. 29, 145–152 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. M. Kondoh, Y. Inoue, S. Atagi, N. Futakawa, M. Higashimoto, and M. Sato. Specific induction of metallothionein synthesis by mitochondrial oxidative stress, Life Sci. 69, 2137–2146 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikson, K.M., Dorman, D.C., Fitsanakis, V. et al. Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 111, 199–215 (2006). https://doi.org/10.1385/BTER:111:1:199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:199

Index Entries

Navigation