Skip to main content
Log in

Induction of metallothionein-like proteins by mercury and distribution of mercury and selenium in the cells of hepatopancreas and gill tissues in mussel Mytilus galloprovincialis

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The binding of mercury (Hg) to metallothioneins (MTs) and the relation between Hg and selenium in supernatants of hepatopancreas and gill tissues of the common mussel Mytilus galloprovincialis (Lamarck, 1819) was investigated. The mussels were exposed to different Hg concentrations in laboratory conditions: 2.5 μgHg/L, 4 d exposure (short term) and 60 μgHg/L, 33 d exposure (long term). In addition, the results were compared to those found for mussels from nature (polluted and unpolluted region). In control and short-term-exposed mussles, the level of Hg extraction (cytosol) from hepatopancreas and gill cells was very low with respect to the total Hg concentrations in the corresponding tissues, around 10% in control and around 20% after exposure. As expected, Hg exposure was followed by Se increase. For Se, the levels of extraction were higher, around 20% in control and up to 50% (heaptopacrease) of 70% (gills) after exposure. In order to study the distribution of Hg and Se in the cells of these organs, the total Hg and Secconcentrations were analyzed in the subcellular fractions obtained after differential centrifugation. Although after exposure the concentrations of both element increased in all subcellular fractions, their percentages in particular fractions were lower or higher. In this study, the convincing binding of Hg to metallothionein-like proteins was perceived after long-term laboratory exposure (gills, heapatopancreas) and in wild mussels collected near industrial port (hepatopancreas). In latter case, we also detected the traces of Se bound to the MT fractions after size-exclusion chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Rainbow, The significance of trace emtal concentrations in marine invertebrates, in Ecotoxicology of Metals in Invertebrates, R. Dallinger and P. S. Rainbow, eds., Lewis, Boca Raton, FL, pp. 3–23 (1993).

    Google Scholar 

  2. D. J. H. Phillips, The use of biologicla indicator organisms to monitor trace metal pollution in marine and estuarine environments: a review, Environ. Pollut. 13, 281–317 (1997).

    Google Scholar 

  3. F. Geret, F. Rainglet, and R. P. Cosson, Comparison between isolation protocols commonly used for the purification of mollusc metallothioneins, Marine Environ. Res. 46, 545–550 (1998).

    Article  CAS  Google Scholar 

  4. D. Biršite, K. N. White, and D. A. Lovejey, Cloning and characterization of metallothionein cDNAs in the mussel Mytilus edulis L. digestive gland, Comp. Biochem. Physiol. C 122, 287–296 (1999).

    Article  Google Scholar 

  5. N. Bodin, T. Burgeot, J. Y. Stanisiere, et al., Seasonal variations of a battery of biomarkers and physiological indices fort he mussels Mytilus galloprovincialis transplated into the northwest Mediterranean Sea, Comp. Biochem. Physiol. C 138, 411–427 (2004).

    CAS  Google Scholar 

  6. F. Geret, A. Jouan, V. Turpin, M. J. Bebianno, and R. P. Cosson, Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve molluscs: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis), Aquat. Living Resource 15, 61–66 (2002).

    Article  Google Scholar 

  7. A. Viarengo, Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level, Aquat. Sci. 1, 295–317 (1989).

    CAS  Google Scholar 

  8. M. J. Bebianno and W. J. Langston, Cadmium and metallothionein turnover in different tissues of the gastropod Littorina litorrea. Talanta 46, 301–313 (1998).

    Article  CAS  Google Scholar 

  9. J. H. R. Kagi, Overview of metallothionein, Methods Enzymol. 205, 613–626 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. J. Pavičić, M. Škreblin, I. Kregar, M. Tušek-Žnidarič, and P. Stegnar, Embrio-larval tolerance of Mytilus galloprovincialis, exposed to the elevated sea water metal concentrations. I. Toxic effects of Cd, Zn and Hg in relation to the metallothionein level, Comp. Biochem. Physiol 107C(2) 249–257 (1994).

    Google Scholar 

  11. M. A. Serafim, R. M. Company, M. J. Bebianno, and W. J. Langston, Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium, Marine Environ. Res. 54, 361–365 (2002).

    Article  CAS  Google Scholar 

  12. G. Roesijadi, Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol. 22, 81–114 (1992).

    Article  CAS  Google Scholar 

  13. N. Romero-Isart and M. Vasak, Advances in the structure and chemistry of metallothioneins. Focused review, J. Inorg. Biochem. 88, 388–396 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. F. Haq, M. Mahony and J. Koropatnick Signaling events for metallothionein induction, Rev. Mutal. Res. 533, 211–226 (2003).

    CAS  Google Scholar 

  15. G. Blackmore and W. Wang, The transfer of cadmium, mercury, methylmercury, and zinc in an intertidal rocky shore food chain, J. Exp. Marine Biol. Ecol. 307, 91–110 (2004).

    Article  CAS  Google Scholar 

  16. R. Lobinski and J. Szpunar, Biochemical speciation analysis by hyphenated techniques, Anal. Chim. Acta 400, 321–332 (1999).

    Article  CAS  Google Scholar 

  17. M. Soto, M. P. Cajaraville, and I. Marigomez, Tissue and cell distribution of copper, zinc and cadmium in the mussel, Mytilus galloprovincialis, determined by autometallography, Tissue Cell 28, 557–568 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. A. Viarengo, M. Pertica, L. Canesi, A. Mazzucotelli, M. Orunesu, and J. M. Bouquegneau, Purification and biochemical characterisation of a lysosomal copper-rich thionein-like protein involved in metal detoxification in the digestive gland of mussels, Comp. Biochem. Physiol. C: Comp. Pharmacol. Toxicol. 93, 389–395 (1989).

    Article  Google Scholar 

  19. W. G. Wallace, G. R. Lopez, and J. S. Levinton, Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp., Marine Ecol. Prog. 172, 225–237 (1998).

    CAS  Google Scholar 

  20. M. M. Storelli and G. O. Marcotrigiano, Subcellular distribution of heavy metals in liver and kidneys of Stenella coeruleoalba and Tursiops truncates from the Mediterranean Sea, Marine Pollut. Bull. 44, 71–81 (2002).

    Article  Google Scholar 

  21. T. Endo, K. Haraguchi, and M. Sakata, Mercury and selenium concentrations in the internal organs of toothed whales and dolphins marketed for human consumptions in Japan, Sci. Total Environ. 300, 15–22 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. L. Bucio, C. Garcia, V. Souza, et al., Uptake, cellular distribution and DNA damage produced by mercuric chloride in a human fetal hepatic cell line. Mutat. Res. 423, 65–72 (1999).

    PubMed  CAS  Google Scholar 

  23. L. Kosta, A. R. Byrne, and V. Zelenko, Correlation between selenium and mercury in man following exposure to inorganic mercury, Nature 254, 238 (1975).

    Article  PubMed  CAS  Google Scholar 

  24. I. Falnoga, M. Tušek-Žnidarič, M. Horvat, and P. Stegnar, Mercury, selenium and cadmium in human autopsy samples from Idrija residents and mercury mine workers, Environ. Res. 84, 211–218 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. M. I. A. Cuvin-Alaral and R. W. Furness, Mercury and selenium interaction: a review. Ecotoxicol. Environ. Safety 21, 348–364 (1991).

    Article  Google Scholar 

  26. C. N. Ferrarello, M. Rosario F. de la Campa, J. F. Carrasco, and A. Sanz-Medel, Speciation of metallothionein-like proteins of the mussel Mytilus edulis by orthogonal separation mechanisms with inductively coupled plasma-mass spectrometry detection: effect of selenium administration, Spectrochim. Acta B 57, 439–449 (2002).

    Article  Google Scholar 

  27. V. Turk, United Nations Environmental Program, Mediterranean Action Plan-Phase III, National Monitoring Program of Slovenia, Report 2002.

  28. C. K. Julshman and K. J. Andersen, Subcellular distribution of major and minor elements in unexposed molluscs in western norway. II. The distribution and binding of cadmium, zinc, copper, magnesium, managanese and iron in the kidney and digestive system of the common mussel Mytilus edulis, Comp. Biochem. Physiol. 75A, 1–13, (1983).

    Google Scholar 

  29. R. A. Byrne and L. Kosta, Sintultaneoous neutron activation determination of selenium and mercury in biological samples by volatilisation, Talanta 21, 1083–1090 (1974).

    Article  CAS  Google Scholar 

  30. V. Stibilj, D. Mazej, and I. Falnoga, A study of low level selenium determination by hydride generation atomic fluorescence spectrometry in water soluble protein and peptide fractions, Anal. Bioanal. Chem. 377, 1175–1183 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. A. Viarengo, E. Ponzano, F. Dondero, and R. Fabbri, A simple spectrophotometric method for metallothionein evaluation in marine organisms: an applicatoion to mediterranean and antarctic molluscs, Marine Environ. Res. 44, 69–84 (1997).

    Article  CAS  Google Scholar 

  32. S. J. Duquesne and J. C. Coll, Metal accumulation in the clam Tridacna crocea under natural and experimental conditions. Aquat. Toxicol. 32, 239–253 (1995).

    Article  CAS  Google Scholar 

  33. L. Soazig and L. Marc, Potential use of the levels of the mRNA of a specific metalloth-ionein isoform (MT-20) in mussel (Mytilus edulis) as a biomarker of cadmium contamination, Marine Pollut. Bull. 46, 1450–1455 (2003).

    Article  CAS  Google Scholar 

  34. A. Giguere, Y. Couillard, P. G. C. Campbell, et al., Steady-state distribution of metals along metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetalic gradient. Aquat. Toxicol. 64, 185–200 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Znidaric, M.T., Falnoga, I., Skreblin, M. et al. Induction of metallothionein-like proteins by mercury and distribution of mercury and selenium in the cells of hepatopancreas and gill tissues in mussel Mytilus galloprovincialis . Biol Trace Elem Res 111, 121–135 (2006). https://doi.org/10.1385/BTER:111:1:121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:121

Index Entries

Navigation