Behavioral effects of acute manganese chloride administration in chickens


The behavioral effects of manganese chloride at 20 and 40 mg/kg, subcutaneously (sc), were examined in 1-mo-old broiler chickens using the open-field (5 min) and tonic immobility tests. In a separate experiment, chickens were subjected to a pharmacological challenge with the anesthetic combination of xylazine-ketamine following manganese chloride pretreatment at 50 mg/kg, sc. Manganese at 40 mg/kg significantly decreased jumping attempts of the chickens in the open-field test 30 min after the injection when compared with the control (saline) group. Both manganese treatments significantly increased the tonic immobility response of the chickens in a dose-dependent manner in comparison with the control group. Pretreatment with manganese chloride (50 mg/kg, sc) significantly increased the duration of sleep, decreased the latency to onset of analgesia, and increased the duration of analgesia in chickens treated with the anesthetic xylazine-ketamine mixture when compared with the saline control group. The respiratory rate of all anesthetized chickens significantly decreased from respective preanesthetic (time 0) values during the 60-min observation period after injection of the anesthetic. However, 60 min after the anesthetic injection, the respiratory rate of the manganese-treated group was significantly lower than that of the control group. The data suggest a depressant action of acute manganese chloride treatment in chickens.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. Iregren, Manganese neurotoxicity in industrial exposure: proof of effects, critical exposure level and sensitive tests, Neurotoxicology 20, 315–323 (1999).

    PubMed  CAS  Google Scholar 

  2. 2.

    L. Normandin, M. Panisset, and J. Zayed, Manganese neurotoxicity: behavioral, pathological, and biochemical effects following various routes of exposure, Rev. Environ. Health 17, 189–217 (2002).

    PubMed  CAS  Google Scholar 

  3. 3.

    J. P. Nachtman, R. E. Tubben, and R. L. Commissaris, Behavioral effects of chronic manganese administration in rats: locomotor activity studies, Neurobehav. Toxicol. Teratol. 8, 711–715 (1986).

    PubMed  CAS  Google Scholar 

  4. 4.

    R. Bast-Pattersen and D. G. Ellingsen, The Klove-Matthews static steadiness test compared with the DPD TREMOR. Comparison of a fine motor control task with measures of tremor in smokers and manganese-exposed workers, Neurotoxicology 26, 331–342 (2005).

    Article  CAS  Google Scholar 

  5. 5.

    R. Bast-Pattersen, D. G. Ellingsen, S. M. Hetland, and Y. Thomassen, Neuropsychological function in manganese alloy plant workers, Int. Arch. Occup. Environ. Health 77, 277–287 (2004).

    Article  CAS  Google Scholar 

  6. 6.

    D. E. McMillan, A brief history of the neurobehavioral toxicity of manganese: some unanswered questions, Neurotoxicology 20, 499–507 (1999).

    PubMed  CAS  Google Scholar 

  7. 7.

    A. Shukakidze, I. Lazriev, and N. Mitagvariya, Behavioral impairments in acute and chronic manganese poisoning in white rats, Neurosci. Behav. Physiol. 33, 263–267 (2003).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    M. Torrente, M. T. Colomina, and J. L. Domingo, Behavioral effects of adult rats concurrently exposed to high doses of oral manganese and restraint stress, Toxicology 211, 59–69 (2005).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    F. Salehi, D. Krewski, D. Mergler, et al., Bioaccumulation and locomotor effects of manganese phosphate/sulfate mixture in Sprague-Dawley rats following subchronic (90 days) inhalation exposure, Toxicol. Appl. Pharmacol. 191, 264–271 (2003).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    R. T. Ingersoll, E. B. Montgomery, Jr., and H. V. Aposhian, Central nervous system toxicity of manganese. I. Inhibition of spontaneous motor activity in rats after intrathecal administration of manganese chloride, Fundam. Appl. Toxicol. 27, 106–113 (1995).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    G. Diaz-Veliz, S. Mora, P. Gomez, et a., Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor, Pharmacol. Biochem. Behav. 77, 245–251 (2004).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    L. Normandin, L. A. Beaupre, F. Salehi, et al., Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese, Neurotoxicology, 25, 433–441 (2004).

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    J. Komura and M. Sakamoto Effects of manganese forms on biogenic amines in the brain and behavioral alterations in the mouse: long-term oral administration of several manganese compounds, Environ. Res. 57, 34–44 (1992).

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    E. J. Talavera, J. L. Arcaya, D. Giraldoth, J. Suarez, and E. Bonilla, Decrease in spontaneous motor activity and in brain lipid peroxidation in manganese and melatonin treated mice, Neurochem. Res. 24, 705–708 (1999).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    D. C. Dorman, M. F. Struve, D. Vitarella, F. L. Byerly, J. Goetz, and R. Miller, Neurotoxicity of manganese chloride in neonatal and adult CD rats following subchronic (21-day) high-dose oral exposure, Appl. Toxicol. 20, 179–187 (2000).

    Article  CAS  Google Scholar 

  16. 16.

    H. J. Martinez, F. Castro-Caraballo, A. Arrieta, and E. Bonilla, Spontaneous motor activity and brain catecholamines in C57BL/6 and albino mice treated with manganese, Invest. Clin. 45, 3–15 (2004) (in Spanish).

    PubMed  Google Scholar 

  17. 17.

    J. Burger and M. Gochfeld, Growth and behavioral effects of early postnatal chromium and manganese exposure in herring gull (Larus argentatus) chicks, Pharmacol. Biochem. Behav. 50, 607–612 (1995).

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    S. Ponzoni, F. S. Guimaraes, E. A. Del Bel, and N. Garcia-Cairasco, Behavioral effects of intra-nigral microinjections of manganese chloride: interaction with nitric oxide, Prog. Neuropsychopharmacol. Biol. Psychiatry 24, 307–325 (2000).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    K. M. Erikson and M. Aschner, Manganese neurotoxicity and glutamate-GABA interaction, Neurochem. Int. 43, 475–480 (2003).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    V. A. Fitsanakis and M. Aschner, The importance of glutamate, glycine, and γ-aminobutyric acid transport and regulation in manganese, mercury and lead toxicity, Toxicol. Appl. Pharmacol. 204, 343–354 (2005).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    K. M. Erikson, C. E. John, S. R. Jones, and M. Aschner, Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter, Environ. Toxicol. Pharmacol. 20, 390–394 (2005).

    Article  CAS  Google Scholar 

  22. 22.

    P. Calabresi, M. Ammassari-Teule, P. Gubellini, et al., A synaptic mechanism underlying the behavioral abnormalities induced by manganese intoxication, Neurobiol. Dis. 8, 419–432 (2001).

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    S. V. Chandra, K. M. Malhotra, and G. S. Shukla, GABAergic neurochemistry in manganese exposed rats, Acta Pharmacol. Toxicol. 51, 456–458 (1982).

    CAS  Article  Google Scholar 

  24. 24.

    K. M. Erikson, A. W. Dobson, D. C. Dorman, and M. Aschner, Manganese exposure and induced oxidative stress in the rat brain, Sci. Total Environ. 334–335, 409–416 (2004).

    PubMed  Google Scholar 

  25. 25.

    J. W. Mathers and R. Hill, Manganese in the nutrition and metabolism of the pullet. 2. The manganese contents of the tissues of pullets given diets of high or low manganese content, Br. J. Nutr. 22, 635–643 (1968).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    I. L. Southern and D. H. Baker, Excess manganese ingestion in the chick, Poult. Sci. 62, 642–646 (1983).

    PubMed  CAS  Google Scholar 

  27. 27.

    C. A. Sanderson and L. J. Rogers, 2,4,5-Trichlorophenoxyacetic acid causes behavioral effects in chickens at environmentally relevant doses, Science 211, 593–595 (1981).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    M. D. Kuwahara and S. B. Sparber, Behavioral consequences of embryonic or early postnatal exposure to 1-α-noracetylmethadol (NLAAM) in the domestic chicken, Neurobehav. Toxicol. Teratol. 4, 323–329 (1982).

    PubMed  CAS  Google Scholar 

  29. 29.

    B. Kh. Al-Baggou', O. S. Al-Dewachi, M. O. Said, and F. K. Mohammad, Behavioral performance, serum glucose level and differential leukocyte count in local domestic chicks treated with xylazine, Iraqi J. Vet. Sci. 12, 223–232 (1999).

    Google Scholar 

  30. 30.

    C. W. Hennig, J. K. Fazio, C. A. Hughes, W. R. Castaldi, and B. D. Spencer, Duration of tonic immobility in chickens as a function of alpha adrenergic receptor stimulation and blockade, Pharmacol. Biochem. Behav. 20, 731–738 (1984).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    H. Zenick, Use of pharmacological challenge to disclose neurobehavioral deficits, Fed. Proc. 42, 3191–3195 (1983).

    PubMed  CAS  Google Scholar 

  32. 32.

    H. A. Tilson, Behavioral indices of neurotoxicity: what can be measured? Neurotoxicol. Teratol. 9, 427–443 (1987).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    F. K. Mohammad, Effect of cadmium on detomidine-ketamine anesthesia in mice, Iraqi J. Vet. Sci. 7, 137–141 (1994).

    Google Scholar 

  34. 34.

    R. B. Harvey, L. F. Kubena, S. L. Lovering, and T. D. Phillips, Ketamine/xylazine anesthesia for chicks, Avian/Exot. Pract. 2, 6–7 (1985).

    Google Scholar 

  35. 35.

    F. K. Mohammad, M. S. Al-Badrany, and A. M. Al-Hasan, Detomidine-ketamine anaesthesia in chickens, Vet. Rec. 133, 192 (1993).

    PubMed  CAS  Google Scholar 

  36. 36.

    A. Petrie and P. Watson, Statistics for Veterinary and Animal Science, Blackwell Science Ltd, Oxford, UK, 1999.

    Google Scholar 

  37. 37.

    R. P. Runyon, Nonparametric Statistics, Addison-Wesley Publishing Co., Reading, MA, 1977.

    Google Scholar 

  38. 38.

    D. A. Cory-Slechta, Behavioral measures of neurotoxicity, Neurotoxicology 10, 271–296 (1989).

    PubMed  CAS  Google Scholar 

  39. 39.

    F. K. Mohammad and L. K. Yakoub, Neurobehavioral effects of medetomidine in mice, Ind. J. Anim. Sci. 97, 33–34 (1997).

    Google Scholar 

  40. 40.

    C. K. Erickson, T. D. Tyler, L. K. Beck, and K. L. Duensing, Calcium enhancement of alcohol and drug-induced sleeping time in mice and rats, Pharmacol. Biochem. Behav. 12, 651–656 (1980).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to F. K. Mohammad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohammad, F.K., Faris, G.AM. Behavioral effects of acute manganese chloride administration in chickens. Biol Trace Elem Res 110, 265–273 (2006).

Download citation

Index Entries

  • Manganese
  • chicken
  • behavior
  • xylazine
  • ketamine
  • open field
  • anesthesia