Skip to main content
Log in

Effect of cadmium on lipid peroxidation and activities of antioxidant enzymes in growing pigs

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Malondialdehyde (MDA), glutathione (GSH) content, total antioxidant capacity (T-AOC) levels, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione transferase (GST) activities were studied in serum, liver, and kidney of growing pigs after graded doses of cadmium administration in diets. One hundred ninety-two barrows (Duroc x Landrace x Yorkshire), with similar initial body weight 27.67±1.33 kg, were randomly allotted into 4 different treatments with 3 replications (16 pigs per replication). The treatments received the same basal diet added with 0, 0.5, 5.0, and 10.0 mg/kg cadmium (as CdCl2), respectively. The results showed pigs treated with 10 mg/kg cadmium significantly decreased average daily gain (ADG) (p<0.05) and increased feed/gain ratio (F/G) (p<0.05) compared to the control. In this treatment, the contents of MDA increased significantly (p<0.05), GSH concentrations, T-AOC levels, and the activities of SOD, GSH-PX, and GST decreased significantly (p<0.05). The results indicate 10 mg/kg cadmium could decrease pig antioxidant capacity after extended exposure and cadmium-induced increase lipid peroxidation might not be only the result of the possibility of lower level of GSH but could also be as a result of direct action of cadmium on peroxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Garrett, Natural sources of metals in the environment, in Metals in Biology and Medicine, Volume 6, John Libbey Eurotext, Paris, pp. 508–510 (2000).

    Google Scholar 

  2. M. J. McLaughlin and B. R. Singh, Cadmium in soils and plants, in Developments in Plant and Soil Science, Volume 85, M. J. McLaughlin and B. R. Singh, eds., Kluwer Academic, Dordrecht, pp. 1–7 (1999).

    Google Scholar 

  3. R. A. Goyer, Mechanisms of lead and cadmium nephrotoxicity, Toxicol. Lett. 46, 153–162 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. S. Saygi, G. Deniz, O. Kutsal, and N. Vural, Chronic effects of cadmium on kidney, liver, testis, and fertility of male rats, Biol. Trace Element Res. 31, 209–214 (1991).

    CAS  Google Scholar 

  5. Z. Hossanin and F. Huq, Studies on the interaction between Cd2+ ions and DNA, J. Inorg. Biochem. 90, 85–96 (2002).

    Article  Google Scholar 

  6. P. L. Goering, M. P. Waalkes, and C. D. Klaassen, in Handbook of Experimental Pharmacology, Volume 115, R. A. Goyer and M. G. Cherian, eds., Toxicology, of Metals, Biochemical Effects, Springer-Verlag, New York, pp. 189–214 (1994).

    Google Scholar 

  7. W. J. Miller, Cadmium nutrition and metbbolism in ruminants: relationship to concentrations in tissues and products, Feedstuffs 43, 24–26 (1971).

    CAS  Google Scholar 

  8. K. C. Kanwar, S. C. Kaushal, and R. V. Mehra, Clearance of orally administered 115mCd from rat tissues, Experientia 15, 1004–1005 (1980).

    Article  Google Scholar 

  9. V. Eybl, D. Kotyzova, J. Koutensky, V. Mickova, M. M. Jones, and P. K. Singh, Effect of cadmium chelating agents on organ cadmium and trace element levels in mice, Analyst 123, 25–26 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. S. Satarug, J. R. Baker, S. Urbenjapol et al., A global perspective on cadmium pollution and toxicity in non-occuptationally exposed population, Toxicol. Lett. 137, 65–83 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. W. G. Pond, P. Chapman, and E. Walker, Jr., Influence of dietary zinc, corn oil and cadmium on certain blood components, weight gain and parakeratosis in young pigs, J. Anim. Sci. 25, 122–127 (1966).

    PubMed  CAS  Google Scholar 

  12. R. J. Cousins, A. K. Baker, and J. R. Trout, Cadmium toxicity in growing swine, J. Nutr. 103, 964–972 (1973).

    PubMed  CAS  Google Scholar 

  13. G. L. Czarnecki and D. H. Baker, Tolerance of the chick to excess dietary cadmium as influenced by dietary cysteine and by experimental infection with Eimeria acervulina, J. Anim. Sci. 54, 983–988 (1982).

    PubMed  CAS  Google Scholar 

  14. C. B. Ammerman, S. M. Miller, K. R. Fick, and S. L. Hansard II, Contaminating elements in mineral supplements and their potential toxicity: a review, J. Anim. Sci. 44, 485–508 (1977).

    PubMed  CAS  Google Scholar 

  15. F. A. Nicholson, B. J. Chambers, J. R. Williams, and R. J. Unwin, Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Tech. 70, 23–31 (1999).

    Article  CAS  Google Scholar 

  16. NRC, Nutrient Requirements of Swine, 10th ed., National Academy Press, Washington, DC (1998).

    Google Scholar 

  17. J. A. Beuege and S. D. Aust, Microsomal lipid peroxidation, Methods Enzymol. 30, 302–310 (1978).

    Article  Google Scholar 

  18. L. Pocker, Oxygen radicals in biological systems, Methods in Enzymology, Volume 105. Academic, New York, p. 93 (1984).

    Google Scholar 

  19. Y. Sazuka, H. Tanizawa, and Y. Takino, Effect of adriamycin on the activities of superoxide dismutase, glutathione peroxidase and catalase in tissues of mice, Jpn. J. Cancer Res. 80, 89–94 (1989).

    PubMed  CAS  Google Scholar 

  20. W. H. Habig, M. J. Pabst, and W. B. Jokoby, Glutathione S-transferase: the first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249, 7130–7139 (1974).

    PubMed  CAS  Google Scholar 

  21. M. S. Moron, J. W. Depierre, and B. Mannervik, Concentrations of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver, Biochem. Biophys. Acta 582, 67–78 (1979).

    PubMed  CAS  Google Scholar 

  22. M. M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  23. N. J. Miller, C. Rice-Evans, M. J. Davies, V. Gopinathan, and A. Milner. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in neonates, Clin. Sci. 84, 407–412 (1993).

    PubMed  CAS  Google Scholar 

  24. L. G. Hansen and T. D. Hinesly, Cadmium from soil amended with sewage sludge: effects and residues in swine, Environ. Health Perspect. 28, 51–57 (1979).

    PubMed  CAS  Google Scholar 

  25. M. Anke T. Masaoka, B. Groppel, G. Zervas, and W. Arnhold, The influence of sulphur, molybdenum and cadmium exposure on the growth of goat, cattle and pig, Arch. Tierernahrung. 39, 221–228 (1989).

    CAS  Google Scholar 

  26. G. L. Czarnecki and D. H. Baker. Tolerance of the chick to excess dietary cadmium as influenced by dietary cysteine and by experimental infection with Eimeria acervulina, J. Anim. Sci. 54, 983–988 (1982).

    PubMed  CAS  Google Scholar 

  27. K. W. Bafundo, D. H. Baker, and P. R. Fitzgerald, Eimeria acervulina infection and the zinc-cadmium interrelationship in the chick, Poult. Sci. 63, 1828–1832 (1984).

    PubMed  CAS  Google Scholar 

  28. X. Y. Han, Z. R. Xu, Y. Z. Wang, X. Tao, and W. F. Li, Effect of dietary cadmium levels on nutrient digestibility and retention of iron, copper and zinc in tissues of growing pigs, Asian-Aust. J. Anim. Sci. 17(7), 1007–1013 (2004).

    CAS  Google Scholar 

  29. T. Ochi, K. Takahashi, and M. Ohsawa, Indirect evidence for the induction of a prooxidant state by cadmium chloride in cultured mammalian cells and a possible mechanism for the induction, Mutat. Res. 180, 257–266 (1987).

    PubMed  CAS  Google Scholar 

  30. S. J. Yiin, C. L. Chern, J. Y. Shen, W. C. Tseng, and T. H. Lin, Cadmium-induced renal lipid peroxidation in rats and protection by selenium, J. Toxicol. Environ. Health 57, 403–413 (1999).

    Article  CAS  Google Scholar 

  31. E. Casalino, C. Sblano, and C. Landriscina, Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation, Arch. Biochem. Biophys. 346, 171–179 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. R. K. Singhal, M. E. Anderson, and A. Meister, Glutathione, a first line of defense against cadmium toxicity, FASEB J. 1, 220–223 (1987).

    PubMed  CAS  Google Scholar 

  33. M. Iscan, T. Coban, B. C. Eke, and M. Iscan, Differential responses of hepatic monooxy-genases and glutathione S-transferases of mice to a combination of cadmium and nickel, Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol. 111, 61–68 (1995).

    Article  CAS  Google Scholar 

  34. S. A. El-Maraghy, M. Z. Gad, A. T. Fahim, and M. A. Hamdy, Effect of cadmium and aluminum intake on the antioxidant status and lipid peroxidation in rat tissues, J. Biochem. Mol. Toxicol. 15, 207–214 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. L. Congiu, M. Chicca, A. Pilastro, M. Turchetto, and L. Tallandini, Effects of chronic dietary cadmium on hepatic glutathione levels and glutathione peroxidase activity in starling (Sturnus vulgaris), Arch. Environ. Contam. Toxicol. 38, 357–361 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. T. Hussain, G. S. Shukla, and S. V. Chandra, Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats. In vivo and in vitro studies, Pharmacol. Toxicol. 60, 355–358 (1987).

    PubMed  CAS  Google Scholar 

  37. G. Hopf, R. Bocker, J. Bischoff, M. G. Warner, and C. J. Estler, Investigation into the combined effect of ethanol and cadmium on rat liver and kidney, Arch. Toxicol. 64, 470–473 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. M. M. Brzóska, J. Moniuszko-Jakoniuk, M. Jurczuk, and M. Gałażyn-Sidorczuk, Cadmium turnover and changes of zinc and copper body status of rats continuously exposed to cadmium and ethanol. Alcohol Alcohol. 37, 213–221 (2002).

    PubMed  Google Scholar 

  39. R. Bauer, I. Demeter, V. Hasemann, and J. T. Johansen, Structural properties of the zinc site in Cu, Zn-superoxide dismutase; perturbed angular correlation of gamma ray spectroscopy on the Cu, 111Cd-superoxide dismutase derivative, Biochem. Biophys. Res. Commun. 94, 1296–1302 (1980).

    Article  PubMed  CAS  Google Scholar 

  40. E. Casalino, G. Calzaretti C. Sblano, and C. Landriscina, Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium, Toxicology 179, 37–50 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. A. Štajn, R. V. Žikć, B. Ognjanović, et al., Effect of cadmium and selenium on the antioxidant defense system in rat kidneys, Comp. Biochem. Physiol. 117C, 167–172 (1997).

    Google Scholar 

  42. I. Cervello, A. Lafuente, M. Giralt, and J. Mallol, Enhanced glutathione S-transferase (GST) activity in pregnant rats treated with benzo(a), pyrene, Placenta 13(3), 273–280 (1992).

    PubMed  CAS  Google Scholar 

  43. M. Q. Hassan, S. A. Hussain, M. A. Zaki, N. Z. Alsharif, and S. J. Stons, Protective effects of antioxidants against uraemia-induced lipid peroxidation and glutathione depletion in humans, Pharmacol. Toxicol. 77, 407–411 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. M. A. El-Missiry and F. Shalaby, Role of beta-carotene in ameliorating the cadmium-induced oxidative stress in rat brain and testis, J. Biochem. Mol. Toxicol. 14, 238–243 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. F. Regoli and G. Principato, Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarker, Aquat. Toxicol. 31, 143–164 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, XY., Xu, ZR., Wang, YZ. et al. Effect of cadmium on lipid peroxidation and activities of antioxidant enzymes in growing pigs. Biol Trace Elem Res 110, 251–263 (2006). https://doi.org/10.1385/BTER:110:3:251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:110:3:251

Index Entries

Navigation