Skip to main content
Log in

Urinary and serum titanium

Assessment as an indicator of exposure to ammonium citratoperoxotitanate (IV) and its influence on renal function

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ammonium citratoperoxotitanate IV (TAS-FINE) is a water-soluble titanium complex used to synthesize a photocatalytic titanium(IV) oxide film. This study was aimed to investigate the LD50, dose-response, time-course response, and renal toxicity of TAS-FINE using an animal model. Serum titanium (S-Ti) and its 24-h urinary excretion (U-Ti) were determined by inductively coupled plasma-argon emission spectrometry (ICP-AES) after a single oral TAS-FINE administration to male Wistar rats. The LD50 of TAS-FINE was 7.97 g/kg body weight in 24 h, and its half-life was 3.78±1.28 d for S-Ti and 2.19±0.09 d for U-Ti. Although TAS-FINE was not easily absorbed in the gastrointestinal tract, it was distributed into the bloodstream in a dose-dependent manner. Within 24 h, 0.189% of administrated Ti was excreted via urine. It was speculated that TAS-FINE formed conjugates with serum constituents that resulted in nephrotoxicity resulting from an allergic reaction. The observed indices in this study were revealed to be good indicators for TAS-FINE exposure. The analytical method and animal model described in this study will help to further elucidate details about human exposure to TAS-FINE, which in recent times has become an occupational and environmental toxicant of concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kakihana, K. Tomita, V. Petrykin, M. Tada, S. Sasaki, and Y. Nakamura, Chelating of titanium by lactic acid in the water-soluble diammonium tris (2-hydroxypropionato) titanate(IV), Inorg. Chem. 43, 4546–4548 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. O. A. Kholdeeva, T. A. Trubitsina, R. I. Maksimovskaya, et al., First isolated active titanium peroxo complex: characterization and theoretical study. Inorg. Chem. 43, 2284–2292 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. O. A. Kholdeeva, G. M. Maksimov, R. I. Maksimovskaya, et al., A dimeric titanium-containing polyoxometalate. Synthesis, characterization, and catalysis of H2O2-based thioether oxidation, Inorg. Chem. 39, 3828–3837 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. J. S. Dalton, P. A. Janes, N. G. Jones, J. A. Nicholson, K. R. Hallam, G. C. Allen, Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach, Environ. Pollut. 120, 415–422 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. S. B. Kim, H. T. Hwang, S. C. Hong. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst, Chemosphere 48, 437–444 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. W. Wang, L. W. Chiang, and Y. Ku, Decomposition of benzene in air streams by UV/TiO(2) process, J. Hazard Mater. 101, 133–146 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. A. Harstrick, H. J. Schmoll, G. Sass, H. Poliwoda, and T. Rustum, Titanocendichloride activity in cisplatin and doxorubicin-resistant human ovarian carcinoma cell lines, Eur. J. Cancer 29, 1000–1002 (1993).

    Article  Google Scholar 

  8. F. Caruso and M. Rossi, Antitumor titanium compounds, Mini. Rev. Med. Chem. 4, 49–60 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. E. Melendez, Titanium complexes in cancer treatment, Crit. Rev. Oncol. Hematol. 42, 309–315 (2002).

    PubMed  Google Scholar 

  10. A. Korfel, M. E. Scheulen, H. J. Schmoll et al., Phase I clinical and pharmacokinetic study of titanocene dichloride in adults with advanced solid tumors, Clin. Cancer Res. 4, 2701–2708 (1998).

    PubMed  CAS  Google Scholar 

  11. G. Lummen, H. Sperling, H. Luboldt, T. Otto, and H. Rubben, Phase II trial of titanocene dichloride in advanced renal-cell carcinoma, Cancer Chemother. Pharmacol. 42, 415–417 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. K. Mross, P. Robben-Bathe, L. Edler, et al., Phase I clinical trial of a day-1, −3, −5 every 3 weeks schedule with titanocene dichloride (MKT 5) in patients with advanced cancer. (Phase I Study Group of the AIO of the German Cancer Society), Onkologie 23, 576–579 (2000).

    Article  PubMed  Google Scholar 

  13. L. G. Harris and R. G. Richards, Staphylococcus aureus adhesion to different treated titanium surfaces, J. Mater. Sci. Mater. Med. 15, 311–314 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. J. Parvizi, E. Wickstrom, A. R. Zeiger, et al.., Titanium surface with biologic activity against infection, Clin. Orthop. Related Res. 429, 33–38 (2004).

    Article  Google Scholar 

  15. K. P. Kuhn, I. F. Chaberny, K. Massholder, et al., Disinfection of surfaces by photocatalytic oxidation with titanium dioside and UVA light, Chemosphere 53, 71–77 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. B. S. Richards, S. F. Rowlands, A. Ueranatasun, J. E. Cotter, and C. B. Honsberg, Potential cost reduction of buried-contact solar cells through the use of titanium dioxide thin films, Solar Energy 76, 269–276 (2004).

    Article  CAS  Google Scholar 

  17. M. Niemela, P. Peramaki, and J. Piispanen, Microwave sample-digestion procedure for determination of arsenic in moss samples using electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry, Anal. Bioanal. Chem. 375, 673–678 (2003).

    PubMed  Google Scholar 

  18. A. Sahuquillo, R. Rubio, J. M. Ribo, E. Ros, and M. Vela, Application of focused-microwave wet digestion to the determination of trace metals in human gallstones by ICP/AES, J. Trace Elements Med. Biol. 14, 96–99 (2000).

    Article  CAS  Google Scholar 

  19. M. Krachler, H. Radner, and K. J. Irgolic, Microwave digestion methods for the determination of trace elements in brain and liver samples by inductively coupled plasma mass spectrometry, Anal. Bioanal. Chem. 355, 120–128 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. I. A. Bergdahl, A. Schutz, L. Gerhardsson, A. Jensen, and S. Skerfving, Lead concentrations in human plasma, urine and whole blood, Scand. J. Work Environ. Health 23, 359–363 (1997).

    PubMed  CAS  Google Scholar 

  21. Z. Karpas, L. Halicz, J. Roiz, et al., Inductively coupled plasma mass spectrometry as a simple, rapid, and inexpensive method for determination of uranium in urine and fresh water: comparison with LIF, Health Phys. 71, 879–885 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. P. Allain, Y. Mauras, C. Douge, L. Jaunault, T. Delaporte, and C. Beaugrand, Determination of iodine and bromine in plasma and urine by inductively coupled plasma mass spectrometry, Analyst 115, 813–815 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. J. Edel, E. Marafante, and E. Sabbioni, Retention and tissue binding of titanium in the rat, Hum. Toxicol. 4, 177–185 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. L. Messori, P. Orioli, V. Banholzer, I. Pais, and P. Zatta, Formation of titanium (IV) transferrin by reaction of human serum apotransferrin with titanium complexes, FEBS Lett. 442, 157–161 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. S. Artik, K. Haarhuis, X. Wu, J. Begerow, and E. Gleichmann, Tolerance to nickel: oral nickel administration induces a high frequency of aneregic T cells with persistent suppressor activity, J. Immunol. 167, 6794–6803 (2001).

    PubMed  CAS  Google Scholar 

  26. S. G. Adler, A. H. Cohen, and R. J. Glassock, Secondary glomerular diseases, in The Kidney, B. M. Brenner, et al., eds., WB Saunders, Philadelphia, pp. 1498–1596 (1996).

    Google Scholar 

  27. P. Boffetta, V. Gaborieau, L. Nadon, M. F. Parent, E. Weiderpass, and J. Siemiatycki, Exposure to titanium dioxide and risk of lung cancer in a population-based study from Montreal Scand. J. Work. Environ. Health 27, 227–232 (2001).

    PubMed  CAS  Google Scholar 

  28. P. Boffetta, A. Soutar, J. W. Cherrie, et al., Mortality among workers employed in the titanium dioxide production industry in Europe, Cancer Causes Control 15, 697–706 (2004).

    Article  PubMed  Google Scholar 

  29. J. P. Fryzek, B. Chadda, D. Marano, et al., A cohort mortality study among titanium dioxide manufacturing workers in the United States, J. Occup. Environ. Med. 45, 400–409 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. S. M. Paulsen, L. B. Nanney, J. B. Lynch, Titanium tetrachloride: an unusual agent with the potential to crate severe burns, J. Burn Care Rehabil. 19, 377–381 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. D. K. Chitkara and B. J. McNeela, Titanium tetrachloride burns to the eye, Br. J. Ophthalmol. 76, 380–382 (1992).

    PubMed  CAS  Google Scholar 

  32. T. Park, R. DiBenedetto, K. Morgan, R. Colmers, and E. Sherman, Diffuse endobronchial polyposis following a titanium tetrachloride inhalation injury, Am. Rev. Respir. Dis. 130, 315–317 (1984).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakasuji, K., Usada, K., Kawasaki, T. et al. Urinary and serum titanium. Biol Trace Elem Res 110, 119–131 (2006). https://doi.org/10.1385/BTER:110:2:119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:110:2:119

Index Entries

Navigation