Skip to main content
Log in

Contents of metals in some wild mushrooms

Its impact in human health

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The concentrations of 7 metals (lead, cadmium, manganese, copper, nickel, silver, and chromium) were determined in 32 different species of wild mushrooms. The mushroom samples, which have been using for food and some medical purposes, were collected from Konya, an Inner Anatolian region of Turkey. The highest metal concentrations were determined as 39 mg/kg Pb and 3.72 mg/kg Cd in Trichaptum abietinum 467 mg/kg Mn in Panaeolus sphinctrinus, 326 mg/kg Cu in Trametes versicolor, 69.4 mg/kg Ni in Helvella spadicea, 6.97 mg/kg Ag in Agaricus campestris, and 84.5 mg/kg Cr in Phellinus igniarius. The maximum contents are 1.52, 2.22, and 60.2 mg/kg in Pleurotus eryngii (for Pb), Amanita vaginata (for Cd), and Helvella leucomelana (for Cu), respectively. These results were compared according to the WHO/FAO standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kalač, B. Svoboda, and B. Havlickova, Contents of detrimental metals mercury, cadmium and lead in wild growing edible mushrooms: a review, Energy Educ. Sci. Technol. 13, 31–38 (2004).

    Google Scholar 

  2. I. Turkekul, M. Elmastas, and M. Tüzen, Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from tokat, Turkey, Food Chem. 84(3), 389–392 (2004).

    Article  CAS  Google Scholar 

  3. A. Lepšová and V. Mejstŕík, Accumulation of trace elements in the fruiting bodies of macrofungi in the Krušné Hory Mountains, Czekhoslovakia, Sci. Total Environ. 76, 117–128 (1988).

    Article  PubMed  Google Scholar 

  4. P. Manzi, A. Aguzzi, and L. Pizzoferrato, Nutritional value of mushrooms widely consumed Italy, Food Chem. 73, 321–325 (2001).

    Article  CAS  Google Scholar 

  5. M. A. García, J. Alonso, M. I. Fernández, and M. J. Melgar, Lead content in edible wild mushrooms in Nortwest Spain as indicator of environmental contamination, Arch. Environ. Contam. Toxicol. 34, 330–335 (1998).

    Article  PubMed  Google Scholar 

  6. A. Lepšová and R. Kral, Lead and cadmium in fruiting bodies of macrofungi in the vicinity of a lead smelter, Sci. Total Environ. 76, 129–138 (1988).

    Article  PubMed  Google Scholar 

  7. A. Demirbaş, Accumulation of heavy metals in some edible mushrooms from Turkey, Food Chem. 68, 415–419 (2000).

    Article  Google Scholar 

  8. M. Işiloĝlu, F. Yilmaz, and M. Merdivan, Concentrations of trace elements, in wild edible mushrooms, Food Chem. 73, 169–175 (2001).

    Article  Google Scholar 

  9. F. Yilmaz, M. Işiloĝlu, and M. Merdivan, Heavy metals levels in some macrofungi, Turkish J. Botany 27, 45–56 (2003).

    Google Scholar 

  10. T. Stijve and R. Benson, Mercury, cadmium and selenium content of mushroom species belonging to the genus Agaricus, Chemosphere 2, 151–158 (1976).

    Article  Google Scholar 

  11. K. Laaksovirta and P. Alakuijala, Lead, cadmium and zinc content on fungi in the parks of Helsinki, Ann. Bot. Fennici 15, 253–257 (1978).

    CAS  Google Scholar 

  12. C. H. Gast, E. Jansen, J. Bierling, and L. Haanstra, Heavy metals in mushrooms and their relationship with soil characteristics, Chemosphere 17(4), 789–799 (1988).

    Article  CAS  Google Scholar 

  13. T. Stijve, E. C. Vellinga, and A. Herrmann, Arsenic accumulation in some higher fungi, Personia 14, 161–166 (1990).

    Google Scholar 

  14. J. Vetter, Toxic elements in certain higher fungi, Food Chem. 48, 207–208 (1993).

    Article  CAS  Google Scholar 

  15. J. Vetter, Data arsenic and cadmium contents of some common mushrooms, Toxicon 32(1) 11–15 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. D. Michelot, E. Siobud, J. V. Dore, C. Viel, and F. Poirier, Update of metal metal content profiles in mushrooms: toxicological implications and tentative approach to the mechanism of bioaccumulation, Toxicon 36, 1997–2012 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. L. Svoboda, K. Zimmermannová, and P. Kalač, Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emissions area of copper smelter and a mercury smelter, Sci. Total Environ. 246, 61–76 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. V. Sh. Barcan, E. F. Kovnatsky, and S. Smetannikova, Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions, Water Air Soil Pollut. 103, 173–195 (1998).

    Article  CAS  Google Scholar 

  19. M. Tüzen, M. Özdemir, and A. Demirbaş, Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin, Food Chem. 63, 247–251 (1998).

    Article  Google Scholar 

  20. M. Tüzen, M. M. Özdemir, and A. Demirbaş, Heavy metal bioaccumulation by cultivated Agaricus bisporus from artifically enriched substrates, Zeit. Lebensmittel-Untersuchung Forschung A 206, 427–429 (1998).

    Google Scholar 

  21. A. Demirbaş, Heavy metal bioaccumulation by mushrooms from artificially fortified soil, Food Chem 74, 293–301 (2001).

    Article  Google Scholar 

  22. A. Demirbaş, Levels of trace elements in the fruiting bodies of mushrooms growing in the East Black sea region, Energy Educ. Sci. Technol. 7(2), 67–81 (2001).

    Google Scholar 

  23. A. Demirbaş, Concentrations of 21 metals in 18 species of mushrooms growing in the East Black sea region, Food Chem. 75, 453–457 (2001).

    Article  Google Scholar 

  24. A. Demirbaş, Metal ion uptake by mushrooms from natural and artificially enriched soils, Food Chem. 78, 89–93 (2002).

    Article  Google Scholar 

  25. E. Sesli and M. Tüzen, Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey, Food Chem. 65, 453–460 (1999).

    Article  CAS  Google Scholar 

  26. Ö. Isildak, I. Turkekul, M. Elmastas, and M. Tuzen, Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey, Food Chem. 86(4), 547–552 (2004).

    Article  CAS  Google Scholar 

  27. M. Moser, Keys to Agarics and Boleti, Gustav Fischer Verlag, Stuttgart (1983).

    Google Scholar 

  28. J. Breitenbach and F. Kränzlin, Fungi of Switzerland. Volume 1. Ascomycetes, Verlag Mykologia, Luzern, Switzerland (1986).

    Google Scholar 

  29. J. Breitenbach and F. Kränzlin, Fungi of Switzerland. Volume 2. Nongilled Fungi, Verlag Mykologia, Luzern, Switzerland (1986).

    Google Scholar 

  30. J. Breitenbach and F. Kränzlin, Fungi of Switzerland. Volume 3. Boletes and Agarics 1, Verlag Mykologia, Luzern, Switzerland (1991).

    Google Scholar 

  31. J. Breitenbach and F. Kränzlin, Fungi of Switzerland. Volume 4, Verlag Mykologia, Luzern, Switzerland (1995).

    Google Scholar 

  32. A. C. Chambarlein, Fallout of lead and uptake by crops, Atm. Environ. 17, 693–706 (1983).

    Article  Google Scholar 

  33. N. S. R. Krishnayya and S. J. Bedi, Effect of automobile lead pollution on Cassia tora L. and Cassia occidentalis L., Environ. Pollut. Series A 40, 221–226 (1986).

    Article  CAS  Google Scholar 

  34. R. Seeger, E. Meyer, and S. Schönüt, Blei in Pilzen, Zeits. Lebensmittel-Untersuchung Forschung A 162, 7–10 (1976).

    Article  CAS  Google Scholar 

  35. K. Thomas, Heavy metals in urban fungi, Mycologist 6, 195–196 (1992).

    Article  Google Scholar 

  36. WHO International Programme on Chemical Safety (IPCS INCHEM). Joint FAO/WHO Expert Committee on Food Additives (JECFA), Safety Evaluation of Certain Food Additives and Contaminants Report No. TRS 44—JECFA 53/273, WHO, Geneva (2000).

    Google Scholar 

  37. J. Vetter, Mineral elements in higher fungi, Mikol. Közlemények 26, 125–150 (1987).

    Google Scholar 

  38. J. Vetter, Mineral element content of edible and poisonous macrofungi, Acta Aliment. 19, 27–40 (1990).

    Google Scholar 

  39. WHO. International Programme on Chemical Safety (IPCS INCHEM). Joint FAO/WHO Expert Committee on Food Additives (JECFA), Safety Evaluation of Certain Food Additives and Contaminants, Report Nos. TRS 776—JECFA 33/28, FAS 24—JECFA 33/163, WHO, Geneva (1988).

    Google Scholar 

  40. L. Friberg, M. Piscator, G. F. Nordberg, and T. Kjellstrom, Cadmium in the Environment, 2nd ed., Chemical Rubber Co., Cleveland, OH (1974).

    Google Scholar 

  41. WHO. International Programme on Chemical Safety (IPCS INCHEM). Joint FAO/WHO Expert Committee on Food Additives (JECFA), Safety Evaluation of Certain Food Additives and Contaminants, Report No. FAS 46—JECFA 55/247, WHO, Geneva (2000).

    Google Scholar 

  42. WHO, International Programme on Chemical Safety (IPCS INCHEM). Joint FAO/WHO Expert Committee on Food Additives (JECFA), Safety Evaluation of Certain Food Additives and Contaminants, Report, No. TRS 837—JECFA 41/28, WHO, Geneva (1993).

    Google Scholar 

  43. J. A. Schmitt and H. U. Meisch, Cadmium in mushrooms, distribution growth effects and binding, Trace Elements Med. 2, 163–166 (1985).

    CAS  Google Scholar 

  44. M. Tüzen, Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry, Microchem. J. 74, 289–297 (2003).

    Article  Google Scholar 

  45. J. Cibulka, L. Sisak, K. Pulkrab, J. Szakova, and A. Fucikova, Cadmium, lead, mercury, and caesium levels in wild mushrooms and forest berries from different localities of the Czech Republic, Scintia Agric. Biochem. 27, 113–129 (1996).

    Google Scholar 

  46. J. Falandaysz, D. Danisiewicz, and H. Bona, Metals content of wild growing mushrooms gathered in the Tucholskie and Kaszuby Forests, Bromatol. Chem. Toksykol. 27, 129–134 (1994) (in Polish).

    Google Scholar 

  47. P. Kalač, M. Wittingerova, I. Stăsková, M. Simak, and J. Bastl Contents of mercury lead, and cadmium in mushrooms, Ceskoslovenska Hygiena 34, 568–576 (1989) (in Czech).

    Google Scholar 

  48. WHO. International Programme on Chemical Safety (IPCS INCHEM). Joint FAO/WHO Expert Committee, on Food Additives (JECFA), Safety Evaluation of Certain Food Additives and Contaminants, Report No. TRS 683—JECFA 26/31, WHO, Geneva (1982).

    Google Scholar 

  49. P. Kalać and L. Svoboda, A review of trace element concentrations in edible mushrooms, Food Chem. 62, 273–281 (2000).

    Google Scholar 

  50. L. Jorhem and B. Sundström, Levels of some trace elements in edible fungi, Zeit. Lebensmittel-Untersuchung Forschung 201, 311–316 (1995).

    Article  CAS  Google Scholar 

  51. P. Kalač, J. Burda, and I. Stăsková, Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter, Sci. Total Environ. 105, 109–119 (1991).

    Article  PubMed  Google Scholar 

  52. A. Andersen, S. E. Lykke, M. Lange, and K. Bech, Trace Elements in Edible Mushrooms, Stat. Levnedsmiddelinst., Denmark (1982) (in Danish).

    Google Scholar 

  53. L. Jorhem and B. Sundström, Levels of some trace elements in edible fungi, Zeit. Lebensmittel-Untersuchung Forschung 201, 311–316 (1995).

    Article  CAS  Google Scholar 

  54. J. Booth, Nickel in the diet and its role in allergic dermatitis, J. Hum. Nutr. Diet 3, 233–243 (1990)

    Google Scholar 

  55. L. Jorhem and B. Sundström, Levels of lead, cadmium, zinc, copper, nickel, chromium, manganese and cobalt in foods on the Swedish market 1983–1990, J. Food Compos. Anal. 6 223–241 (1993).

    Article  CAS  Google Scholar 

  56. R. W. Dabeka and A. D. McKenzie, Survey of lead, cadmium, fluoride, nickel, and cobalt in food composites and estimation of dietary intakes of these elements by Canadians in 1986–1988, J. Assoc. Off. Anal. Chem. Int. 78, 897–909 (1995).

    CAS  Google Scholar 

  57. Levnedsmiddelstyrelsen, Overvågningssystem, for Levnedsmidler, 1988–1992, Sundhetsministeriet, Søborg (1995).

    Google Scholar 

  58. G. A. Smart and J. C. Sherlock, Nickel in foods and the diet, Food Addit. Contami. 4, 61–71 (1987).

    CAS  Google Scholar 

  59. G. N. Flint and S. Packirisamy, Systemic nickel: the contribution made by stainless-steel cooking utensils, Contact dermat. 32, 218–224 (1995).

    Article  CAS  Google Scholar 

  60. W. Becker and J. Kumpulainen, Contents of essential and toxic mineral elements in Swedish market-basket diets in 1987, Br. J. Nutr. 66, 151–160 (1991).

    Article  PubMed  CAS  Google Scholar 

  61. M. A. Flyvholm, G. D. Nielsen, and A. Andersen, Nickel content of food and estimation of dietary intake, Zeit. Lebensmittel-Untersuchung Forschung 179, 427–431, (1984).

    Article  CAS  Google Scholar 

  62. R. W. Dabeka, Survey of lead, cadmium, cobalt and nickel in infant formulas and evaporated milks and estimation of dietary intakes of the elements by infants 0–12 months old, Sci. Total Environ. 89, 279–289 (1989).

    Article  PubMed  CAS  Google Scholar 

  63. N. K. Veien and M. R. Andersen, Nickel in Danish food Acta Dermato-Venereol. 66, 502–509 (1986).

    CAS  Google Scholar 

  64. P. Kalač and I. Staskova, Heavy metals in fruiting bodies wild growing mushrooms of the genus Agaricus, Potravinarske Vedy 12, 185–195 (1991) (in Czech).

    Google Scholar 

  65. R. Seeger, Toxsiche schwermetalle in Pilzen, Deuts. Apotheke Zeit. 122, 1935–1844 (1982).

    Google Scholar 

  66. FAO/WHO, Codex Committee on Food Additivies Report of the Seventeenth Session of the Joint FAO/WHO, Codex Alimentarius Commission, Rome (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doĝan, H.H., Şanda, M.A., Uyanöz, R. et al. Contents of metals in some wild mushrooms. Biol Trace Elem Res 110, 79–94 (2006). https://doi.org/10.1385/BTER:110:1:79

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:110:1:79

Index Entries

Navigation