Skip to main content
Log in

Influence of sodium fluoride and caffeine on the kidney function and free-radical processes in that organ in adult rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

An experiment was carried out on Sprague-Dawley rats (adult males) that for 50 days were administered, in the drinking water, NaF and NaF with caffeine (doses, respectively: 4.9 mg of NaF/kg body mass/24 h and 3 mg of caffeine/kg body mass/24 h). Disturbances were noted in the functioning of kidneys, which were, particularly noticeable after the administration of NaF with caffeine. Changes in the functioning of kidneys were also confirmed by such parameters as the level of creatinine, urea, protein, and calcium. Modifications of the enzymatic antioxidative system (superoxide dismutase, catalase, and glutathione peroxidase) and lipid peroxidation (malondialdehyde) were also observed. Changes in the contents of the above parameters as well as pathomorphological examinations suggest increased diuresis, resulting in dehydration of the rats examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gumińska, Fluorine in natural environment, Aura 4, 6–8 (1984).

    Google Scholar 

  2. M. Gumińska, The fluorine compounds in environment and their influence upon health, in Chemical Toxic Substances in Environment and Their Influence upon Human Health, Editorial PAN, Warsaw, pp. 59–81 (1990).

    Google Scholar 

  3. X. Chen and G. M. Whitford, Lack of significant effect of coffee and caffeine on fluoride metabolism in rats, J. Dent. Res. 73, 1173–1179 (1994).

    PubMed  CAS  Google Scholar 

  4. D. Chlubek, J. Zawierta, A. Kazimierczyk, et al., Effect of different fluoride ion concentrations on malondialdehyde (MDA) formation in the mitochondrial fraction of human placental cells, Bromat. Chem. Toksykol. 2, 119–122 (1999).

    Google Scholar 

  5. S. Cuzzocrea, D. P. Riley, A. P. Caputi, et al., Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury, Pharmacol. Rev. 53, 135–159 (2001).

    PubMed  CAS  Google Scholar 

  6. W. Droge, Free radicals in the physiological control of cell function, Physiol. Rev. 82, 47–95 (2002).

    PubMed  CAS  Google Scholar 

  7. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon, Oxford (2001).

    Google Scholar 

  8. C. Bognan, M. Rollinghoff, and A. Diefenbach, Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity, Curr. Opin. Immunol. 12, 64–76 (2000).

    Article  Google Scholar 

  9. M. B. Hampton, A. J. Kettle, and C. C. Winterbourn, Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing, Blood 92, 3007–3017 (1998).

    PubMed  CAS  Google Scholar 

  10. F. Gurkan, Y. Atamer, A. Ece, et al., Relationship among serum selenium levels, lipid peroxidation, and acute bronchiolitis in infancy, Biol. Trace Element Res. 100, 97–104 (2004).

    Article  CAS  Google Scholar 

  11. V. J. Thannickal and B. L. Fanburg, Reactive oxygen species in cell signaling, Am. J. Physiol. Lung Cell Mol. Physiol. 279, 1005–1028 (2000).

    Google Scholar 

  12. D. Zwolińska, Lipid peroxidation and antioxidant enzymes in patients with chronic renal failure (CRF), Adv. Clin. Exp. Med. 7, 87–92 (1998).

    Google Scholar 

  13. Y. Oyanagui Reevaluation of assay methods and establishment of kit for superoxide dismutase activity, Anal. Biochem. 142, 290–296 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. H. Aebi, Catalase in vitro, Methods Enzymol. 105, 121–126 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. D. E. Paglia and W. N. Valentine, Studies on the qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–169 (1967).

    PubMed  CAS  Google Scholar 

  16. H. Okhawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95, 351–358 (1979).

    Article  Google Scholar 

  17. J. Jankauskas, Effect of fluoride on kidney (a review), Fluoride 7, 93–105 (1974).

    CAS  Google Scholar 

  18. Editorial: Nonskeletal fluorosis Fluoride 11, 111–114 (1978).

  19. P. A. Monsour and B. J. Kruger, Effect of fluoride on soft tissues in vertebrates (a review), Fluoride 18, 53–61 (1985).

    CAS  Google Scholar 

  20. T. Date, H. Nishiura, K. Usuda, et al., Dose response relationship between intravenous administration of sodium fluoride and acute renal damage in rats, Fluoride 31, 9 (1998) (abstract).

    Google Scholar 

  21. A. Sashi, J. P. Aihgh, and S. P. Thapar, Toxic effect of fluoride on rabbit kidney, Fluoride 35, 38–50 (2002).

    Google Scholar 

  22. J. A. Indulski, Sanitary Criteria of Environmental Fluorine and Fluorides, PZWL, Vol. 36 (1989).

  23. E. Grucka-Mamczar, E. Birkner, R. Polaniak, et al., Disturbances of kidney function in young rats after chronic exposure to NaF contained in drinking water, Ann. Acad. Med. Siles 54–55, 9–14 (2003).

    Google Scholar 

  24. J. Kwiatkowski, Superoxide dismutase—structure, function, phylogenesis, Post. Biochem. 34, 311–333 (1988).

    Google Scholar 

  25. I. Mader-Wolyńska and D. Zwolińska, Peroxidation of lipids and activity of antioxidant enzymes in children with nephritic syndrome, Pol. Merk. Lek. 58, 233–236 (2001).

    Google Scholar 

  26. B. A. Zachara, D. Koterska, J. Manitius, et al., Selenium supplementation on plasma glutathione peroxidase activity in patients with end-stage chronic renal failure, Biol. Trace Element Res. 97, 15–30 (2004).

    Article  CAS  Google Scholar 

  27. M. G. Soni, M. S. Kachole, and S. S. Pawar, Alterations in drug metabolising enzymes and lipid peroxidation an different rat tissues by fluoride, Toxicol. Lett. 21, 167–172 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. D. S. Ikumari and P. R. Rao, Red cell membrane alterations in human chronic fluoride toxicity, Biochem. Int. 23, 639–648 (1991).

    Google Scholar 

  29. I. I. Silenko, O. I. Tsebrzhinski, and V. P. Mishchenko, The mechanism of the action of fluoride on periodontal tissues, Fiziol. Zh. 38, 85–90 (1992).

    PubMed  CAS  Google Scholar 

  30. J. R. Diamond, J. V. Bonventre, and M. J. Karnovsky, A role for oxygen free radicals in aminonucleoside nephrosis, Kidney Int. 29, 478–483 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Kasperczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birkner, E., Grucka-Mamczar, E., Żwirska-Korczala, K. et al. Influence of sodium fluoride and caffeine on the kidney function and free-radical processes in that organ in adult rats. Biol Trace Elem Res 109, 35–47 (2006). https://doi.org/10.1385/BTER:109:1:035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:109:1:035

Index Entries

Navigation