Skip to main content
Log in

Effect of black cumin (Nigella sativa) on cadmium-induced oxidative stress in the blood of rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The protective effect of black cumin (Nigella sativa=NS) on cadmium-induced oxidative stress was studied in rats. The rats were randomly divided into three experimental groups: A (conrol), B (Cd treated), and C (Cd+NS treated), each containing 10 animals. The Cd-treated and Cd+NS-treated groups were injected subcutaneously daily with CdCl2 dissolved in isotonic NaCl in the amount of 2 mL/kg for 30 d, resulting in a dosage of 0.49 mg Cd/kg/d. The control group was injected with only isotonic NaCl (2 mL/kg/d) throughout the experiment (for 30 d). Three days prior to induction of CdCl2, the Cd+NS-treated group received a daily intraperitoneal injection of 0.2 mL/kg NS until the end of the study. Cd treatment increased significantly the malondialdehyde levels in plasma and erythrocyte (p<0.01 and p<0.05, respectively) and also increased significantly the antioxidant levels (superoxide dismutase, glutathione peroxidase, and catalase) (p<0.05) compared to the control group. Cd+NS treatment decreased significantly the elevated malondialdehyde levels in plasma and erythrocyte (p<0.01 and p<0.05, respectively) and also reduced significantly the enhanced antioxidant levels (p<0.05). Cd treatment increased significantly the activity of iron levels (p<0.05) in the plasma compared to the control group. Cd+NS treatment decreased the activity of iron levels (p<0.05) in the plasma compared to the Cd-treated group. In the control group with no treatment, histology of erythrocytes was normal. In the Cd-treated group, there were remarkable membrane destruction and hemolytic changes in erythrocytes. In the Cd+NS treated group, these changes were less than in the Cd-treated group. Our results show that N. sativa exerts a protective effect against cadmium toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Morselt, Environmental pollutant and diseases, Toxicology 70, 1–132 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. WHO, Environmental Health Criteria 134, Cadmium, World Health Organization, Geneva (1992).

    Google Scholar 

  3. US Departmant of Health Services, Toxicological profile for cadmium, Draft for public comment, A gency for Toxic Substances and Disease Registry, Atlanta, GA (1997).

    Google Scholar 

  4. M. A. Amoruso, G. Witz, and B. D. Goldstein, Enhancement of rat and human phagocyte superoxide anion radical production by cadmium in vitro, Toxicol. Lett. 10, 133–138 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. Z. Zhong, W. Troll, K. L. Koenig, and K. Frenkel. Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes, cancer Res. 20, 7564–7570 (1990).

    Google Scholar 

  6. T. Ochi, F. Otkusa, K. Takahashi, and M. Oshawa, Glutathione and metallothioneins as cellular defense against cadmium toxicity in culture chinese hamster cells, Chem. Biol. Interact. 65, 1–14 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. S. J. Stohs and D. Bagchi, Oxidative mechanism in the toxicity of metal ions, Free Radical Biol. Med. 18, 321–336 (1995).

    Article  CAS  Google Scholar 

  8. M. Sugiyama. Role of cellular antioxidants in metal-induced damage, Cell. Biol. Toxicol. 10, 1–22 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. J. W. Bauman, J. Liu, and C. D. Klaassen, Production of meallothionein and heat-shock proteins in response to metals, Fundam. Appl. Toxicol. 21, 15–22 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. C. Simpkins, T. Lloyd, S. Li, and S. Balderman, Metallothionein-induced increase in mitochondrial inner membrane permeability, J. Surg. Res. 75, 30–34 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. S. Sarkar, P. Yadav, R. Trivedi, A. K. Bansal, and D. Bhatnagar, Cadmium-induced lipid peroxidation and the status of the antioxidant system in rat tissues, J. Trace Elements Med. Biol. 9, 144–149 (1995).

    CAS  Google Scholar 

  12. M. M. Kostić, B. Ognjanović, R. V. Zikić, et al., Cadmium-induced changes of antioxidant and metabolic status in red blood cells of rats: in vivo effects, Eur. J. Haematol. 51, 86–92 (1993).

    Article  PubMed  Google Scholar 

  13. R. V. Zikić, A. Stajn, B. Ognjanović, et al., The effect of cadmium and selenium on the antioxidant enzyme activities in rat heart, J. Environ. Pathol. Toxicol. Oncol. 17, 259–264 (1998).

    PubMed  Google Scholar 

  14. M. M. Kostić, B. Ognjanović, R. V. Zikić, et al., Effects of Cadmium on antioxidant enzymes, glutathione and lipid peroxidation in brown adipose tissue, Iugoslov Physiol. Pharmacol. Acta 29, 137–145 (1993).

    Google Scholar 

  15. M. W. Fariss, Cadmium toxicity: unique cytoprotective properties of alpha tocopheryl succinate in hepatocytes, Toxicology 69, 63–77 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. K. E. H. El-Tahir, M. M. S. Ashour, and M. M. Al-Harbi, The respiratory effects of the volatile oil of the black seed (Nigella sativa) in guinea pigs: elucidation of the mechanism(s) of action. Gen. Pharmacol. 24, 1115–1122 (1993).

    PubMed  CAS  Google Scholar 

  17. A. El-Kadi and O. Kandil, The black seed (Nigella sativa) and immunity: its effect on human T cell subset, Fed. Proc. 46, 1222 (1987).

    Google Scholar 

  18. M. S. M. Hanafy and M. E. Hatem, Studies of antimicrobial activity of Nigella sativa seed (black cumin). J. Entopharmacol. 34, 275–278 (1991).

    Article  CAS  Google Scholar 

  19. A. Zaoui, Y. Cherrah, M. A. Lacaille-Dubois, et al., Diuretic and hypotensive effects of Nigella sativa in the spontaneously hypertensive rat, Therapeutics 55, 379–382 (2000).

    CAS  Google Scholar 

  20. M. K. Turkdogan, Z. Agaoglu, Z. Yener, et al., The role of antioxidant vitamins (C and E), selenium and Nigella sativa in the prevention of liver fibrosis and cirrhosis in rabbits: new hopes, Dtsch. Tierarztl. Wochenschr. 108, 71–73 (2001).

    PubMed  CAS  Google Scholar 

  21. M. Kanter, I. Meral, Z. Yener, et al., Partial regeneration/proliferation of the beta-cells in the islets of langerhans by Nigella sativa L. in streptozotocin-induced diabetic rats, Tohoku J. Exp. Med. 201, 213–219 (2003).

    Article  PubMed  Google Scholar 

  22. M. Kanter, O. Coskun, A. Korkmaz, and S. Oter, Effects of Nigella sativa on oxidative stress and β-cell damage in streptozoto cin-induced diabetic rats, Anat. Rec. 279, 685–691 (2004).

    Article  CAS  Google Scholar 

  23. M. Kanter, M. Yoruk, A. Koç, et al., Effect of cadmium exposure on morphological aspects of pancreas, weights of fetus and placenta in streptozotocin-induced diabetic pregrant rats, Biol. Trace Element Res. 93, 189–200 (2003).

    Article  CAS  Google Scholar 

  24. H. H. Draper and M. Hadley, Malondialdehyde determination as index of lipid peroxidation, Methods Enzymol. 186, 421–431 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. J. M. McCord and I. Fridovich, Superoxide dismutase. An enzymatic function for erythrocupreine (hemocupreine), J. Biol. Chem. 244, 6049–6056 (1969).

    PubMed  CAS  Google Scholar 

  26. E. Beutler, Catalase, in Red Cell Metabolism: A Manual of Bichemical Methods, E. Beutler, ed., Grune and Stratton, New York, pp. 105–106 (1982).

    Google Scholar 

  27. J. Maral, K. Puget, and A. M. Michelson, Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals, Biochem. Biophys. Res. Commun. 77, 1525–1535 (1977).

    Article  PubMed  CAS  Google Scholar 

  28. H. P. Misra and I. Fridovich, The role of superoxide anion in autoxidation of epinephrine and simple assay for superoxide dismutase, J. Biol. Chem. 247, 3170–3175 (1972).

    PubMed  CAS  Google Scholar 

  29. B. I. Ognjanović, S. Z. Pavlovic, R. V. Zikić, et al., The effect of olive oil on the plasma transaminase activities and blood hematological values of rats exposed to cadmium, Kragujevac J. Sci. 22, 93–99 (2000).

    Google Scholar 

  30. R. V. Zikić, A. S. Stajn, B. I. Ognjanović, et al., Activities of superoxide dismutase and catalase in erythrocytes and transaminases in the plasma of carps (Cyprinus carpio L.) exposed to cadmium, Physiol Res. 46, 391–396 (1997).

    PubMed  Google Scholar 

  31. S. Z. Pavlovic, B. I. Ognjanović, A. S. Stajn, et al., The effect of coenzyme Q10 on blood ascorbic acid, vitamin e, an lipid peroxide in chronic cadmium intoxication, J. Environ. Pathol. Toxicol. Oncol. 20, 133–140 (2001).

    PubMed  CAS  Google Scholar 

  32. R. V. Zikić, A. S. Stajn, S. Z. Pavlovic, et al., Activities of superoxide dismutase and catalase in erythrocytes and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiol. Res. 50, 105–111 (2001).

    PubMed  Google Scholar 

  33. B. I. Ognjanović, S. Z. Pavlovic, S. D. Maletic, et al., Protective influence of vitamin e on antioxidant defense system in the blood rats terated with cadmium, Physiol. Res. 52, 563–570 (2003).

    PubMed  Google Scholar 

  34. Z. A. Shaikh, T. T. Vu, and K. Zaman, Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants, Toxicol. Appl. Pharmacol. 154, 256–263 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. S. Sarkar, P. Yadav, and D. Bhatnagar, Lipid peroxidative damage on cadmium exposure and alteration in antioxidant system in rat erythrocytes: a study with relation to time, J. Trace Elements Med. Biol. 11, 8–13 (1997).

    CAS  Google Scholar 

  36. H. Shi, N. Noguchi, and E. Niki, Comparative study on dynamics of antioxidative action of α-tocopheryl hydroquinone, ubiquinol, and α-tocopherol against lipid peroxidation, Free Radical Biol. Med. 27, 334–346. (1999).

    Article  CAS  Google Scholar 

  37. A. Skoczynska and R. Smolik, The effect of combined exposure to lead and cadmium on serum lipids and lipid peroxides levels in rat, Int. J. Occup. Med. Environ. Health 7, 263–271 (1994).

    PubMed  CAS  Google Scholar 

  38. S. Sarkar, P. Yadav, and D. Bhatnager, Lipid peroxidative damage on cadmium exposure and alterations in antioxidant system in rat erythrocytes: a study with relation to time, Biometals 11, 153–157 (1998).

    Article  PubMed  CAS  Google Scholar 

  39. S. J. Stohs, D. Bagchi, E. Hassoun, et al., Oxidative mechanisms in the toxicity of chromium and cadmium ions, J. Environ. Pathol. Toxicol. Oncol. 19, 201–213 (2000).

    PubMed  CAS  Google Scholar 

  40. E. Beytut, A. Yuce, N. N. Kamiloglu, et al., Role of ditary vitamin E in cadmium-induced oxidative damage in rabbit's blood, liver and kidneys, Int. J. Vitam. Nutr. Res. 73, 351–355 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. A. Shukla, G. S. Shukla, and R. C. Srimal, Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat, Hum. Exp. Toxicol. 15, 400–405 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. T. Hamada A. Tanimato, N. Arima, et al., Pathological study of splenomegaly associated with cadmium-induced anemia in rats, Sangyo Ika Daigaku Zasshi 30, 2343–2349 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanter, M., Coskun, O. & Gurel, A. Effect of black cumin (Nigella sativa) on cadmium-induced oxidative stress in the blood of rats. Biol Trace Elem Res 107, 277–287 (2005). https://doi.org/10.1385/BTER:107:3:277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:107:3:277

Index Entries

Navigation